Informática con mención en Ciencias de la Computación
Permanent URI for this collectionhttp://98.81.228.127/handle/20.500.12404/6357
Browse
Item Diseño de un modelo explicativo basado en ontologías aplicado a un chatbot conversacional(Pontificia Universidad Católica del Perú, 2024-01-15) Arteaga Meléndez, Daniel Martin; Gómez Montoya, Héctor ErasmoActualmente, la inteligencia artificial es una de las áreas de investigación más importantes para el desarrollo de tecnología en múltiples disciplinas. Aunque ha tenido un crecimiento exponencial en los últimos años, el entendimiento de cómo funciona es mínimo para la mayoría de las personas. En consecuencia de ello, su uso en actividades que implican una toma de decisiones es limitado, lo cual se evidencia en el Reporte 2023 de Artificial Intelligence Index [1]. Según este reporte, el cambio porcentual en las respuestas de adopción de la inteligencia artificial por industria y actividad entre el 2021 y 2022 ha sido de -15% y -13% para las actividades de marketing y ventas, y desarrollo de productos y/o servicios, respectivamente. Frente a esto se propone el diseño de un modelo que permita explicar los componentes básicos de un sistema basado en inteligencia artificial a través de un chatbot conversacional en idioma inglés. De este modo, la explicación se brinda en un formato sencillo (texto) y a través de un medio interactivo (conversación). El modelo explicativo se basa en la ontología XAIO, propuesta en este estudio y desarrollada a partir de dos ontologías de aprendizaje de máquina e inteligencia artificial explicable. Haciendo uso de un modelo de generación de lenguaje natural a partir de datos estructurados, el modelo explicativo genera explicaciones en lenguaje natural basadas en el conocimiento descrito en las tripletas de la ontología XAIO. Para evaluar el modelo se implementó un chatbot conversacional que utiliza un modelo de entendimiento de lenguaje natural para identificar intenciones y entidades, a partir de las cuales se realizan las consultas en la ontología que permiten obtener las tripletas. En la evaluación cuantitativa se obtuvo un BLEU promedio de 76.97, lo cual indica un buen desempeño en la tarea de generación de lenguaje natural a partir de datos estructurados. Asimismo, se desarrollaron sistemas de inteligencia artificial explicable con chatbot para la prueba con usuarios y se obtuvo un SUS de 69, indicando una usabilidad por encima del promedio. Finalmente, también se realizó una evaluación cualitativa para obtener las apreciaciones de los participantes acerca de los sistemas, las cuales señalan la coherencia al momento de responder, la sencillez de las respuestas y la interacción amigable con el chatbot.