Estadística

Permanent URI for this collectionhttps://hdl.handle.net/20.500.12404/757

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Estimación de áreas pequeñas mediante modelos aditivos de ubicación, escala y forma aplicados a una encuesta de hogares en Perú
    (Pontificia Universidad Católica del Perú, 2024-08-09) Stehli Torrecilla, Hans; Valdivieso Serrano, Luis Hilmar
    El objetivo de la presente tesis es evaluar la robustez de los modelos aditivos de ubicación, escala y forma (GAMLSS) en una estimación en áreas pequeñas. Para ello, se realizan simulaciones estadísticas en donde se aplican estos modelos para diferentes distribuciones de la variable dependiente considerando distintos niveles de variabilidad entre las áreas, analizando la precisión de los resultados en cada caso. Asimismo, se realiza una aplicación utilizando la Encuesta Nacional de Hogares de Perú (ENAHO) del año 2017 para obtener indicadores de infraestructura de hogares y sus intervalos de confianza a nivel distrital para el departamento de Ica, además de contrastar las estimaciones con las cifras poblacionales obtenidas del Censo Nacional del mismo año. Los resultados revelan que los indicadores obtenidos mediante GAMLSS tienen un menor error cuadrático medio que aquellos estimados de manera directa, considerando el diseño muestral. Asimismo, se encuentra que los GAMLSS generan resultados más exactos respecto a los valores poblacionales, aunque ello depende de la heterogeneidad de las áreas. Este hallazgo es consistente aún bajo el supuesto de una variable dependiente de tipo dicotómica (balanceada o no balanceada) o de tipo numérica (discreta o continua). Asimismo, estas bondades son más evidentes si el tamaño de las muestras de las áreas es reducido. Finalmente, a través de la aplicación, se han obtenido estimaciones puntuales y intervalos de confianza para indicadores de acceso a saneamiento y número de habitaciones de las viviendas, correspondientes a 37 distritos del departamento de Ica.
  • Thumbnail Image
    Item
    Jointly modelling of cluster dependent pro les of fractional and binary variables from a Bayesian point of view
    (Pontificia Universidad Católica del Perú, 2020-10-27) Cortés Tejada, Fernando Javier; Bayes Rodríguez, Cristian Luis
    En la presente tesis se proponen modelos de clasificación basados en regresiones beta inflacionadas cero-uno con efectos mixtos para modelar perfiles longitudinales de variables fraccionarias mixtas y variables binarias de forma conjunta con formación de clústeres. Las distintas parametrizaciones de los modelos propuestos permiten modelar distintos efectos, como modelar directamente la media marginal a través de covariables e interpretar fácilmente su efecto sobre ella o modelar la media condicional y las probabilidades de inflación de forma separada. Además, se forman clústeres de grupos de individuos con perfiles longitudinales similares a través de una variable latente, asumiendo que las variables respuesta siguen un modelo de mixtura finita. Debido a la complejidad de los modelos, los parámetros se estiman desde un punto de vista bayesiano, a partir de simulaciones MCMC utilizando el software JAGS en R. Se prueban los modelos propuestos sobre diferentes bases de datos simulados para medir el desempeño de los mismos y se comparan con otros modelos a fin de verificar cual ajusta mejor los perfiles longitudinales de variables fraccionarias mixtas y variables binarias. Por último, se aplican los modelos propuestos a datos reales de un banco peruano, con información del ratio de uso de tarjetas de crédito en el periodo de un año, estado de default del cliente y otras covariables correspondientes al cliente poseedor de la tarjeta, con el objetivo de obtener clústeres de individuos con similar ratio de uso de tarjeta de crédito y relacionarlos con la probabilidad de caer en default que presenta cada grupo.
  • Thumbnail Image
    Item
    A beta inflated mean regression model with mixed effects for fractional response variables
    (Pontificia Universidad Católica del Perú, 2017-06-20) Fernández Villegas, Renzo; Bayes Rodríguez, Cristian Luis
    In this article we propose a new mixed effects regression model for fractional bounded response variables. Our model allows us to incorporate covariates directly to the expected value, so we can quantify exactly the influence of these covariates in the mean of the variable of interest rather than to the conditional mean. Estimation is carried out from a Bayesian perspective and due to the complexity of the augmented posterior distribution we use a Hamiltonian Monte Carlo algorithm, the No-U-Turn sampler, implemented using Stan software. A simulation study for comparison, in terms of bias and RMSE, was performed showing that our model has a better performance than other traditional longitudinal models for bounded variables. Finally, we applied our Beta Inflated mixed-effects regression model to real data which consists of utilization of credit lines in the peruvian financial system.