Estadística

Permanent URI for this collectionhttp://98.81.228.127/handle/20.500.12404/757

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Modelo secuencial con aplicación a la medición del rendimiento estudiantil
    (Pontificia Universidad Católica del Perú, 2019-02-04) Mejía Campos, Luis Ángel; Tarazona Vargas, Enver Gerald
    En este trabajo se presenta el Modelo Secuencial para datos politómicos ordinales de la teoría de respuesta al ítem y sus características. De forma específi ca se estudia el Modelo Secuencial Logístico de 2 parámetros (2PL-SM). La estimación de este modelo se realiza utilizando Métodos de Cadenas de Markov de Montecarlo (MCMC), los cuales fueron implementados en R y WinBUGS. Se realizó un estudio de simulación con el objetivo de estudiar la precisión en la recuperación de parámetros observándose resultados apropiados según los índices de precisión utilizados. El Modelo Secuencial en estudio fue luego aplicado a la prueba de escritura de la Evaluación Muestral 2013 del Ministerio de Educación, evaluación que fue aplicada a una muestra de 4327 estudiantes de sexto grado de primaria de todo el país. Con la aplicación del modelo a la prueba se pudo determinar que en general esta contiene ítems cuyas di ficultades son bajas y que, para los estudiantes, el enfrentarse a esta prueba no debería resultarles complicado.
  • Thumbnail Image
    Item
    Inferencia bayesiana en un modelo de regresión cuantílica semiparamétrico
    (Pontificia Universidad Católica del Perú, 2015-07-20) Agurto Mejía, Hugo Miguel; Bayes Rodríguez, Cristian Luis
    Este trabajo propone un Modelo de Regresión Cuantílica Semiparamétrico. Nosotros empleamos la metodología sugerida por Crainiceanu et al. (2005) para un modelo semiparamétrico en el contexto de un modelo de regresión cuantílica. Un enfoque de inferencia Bayesiana es adoptado usando Algoritmos de Montecarlo vía Cadenas de Markov (MCMC). Se obtuvieron formas cerradas para las distribuciones condicionales completas y así el algoritmo muestrador de Gibbs pudo ser fácilmente implementado. Un Estudio de Simulación es llevado a cabo para ilustrar el enfoque Bayesiano para estimar los parámetros del modelo. El modelo desarrollado es ilustrado usando conjuntos de datos reales.