Estadística

Permanent URI for this collectionhttp://98.81.228.127/handle/20.500.12404/757

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    El modelo de larga duración Exponencial-Poisson
    (Pontificia Universidad Católica del Perú, 2018-12-03) Gonzales Rodriguez, Julia Elena; Sal y Rosas Celi, Víctor Giancarlo
    En esta tesis se introducir y estudiar el modelo de supervivencia de larga duración Exponencial-Poisson. Este modelo permite estudiar el tiempo hasta la ocurrencia de un evento de interés cuando se asume que existe una fracción de unidades de la población inmunes a la ocurrencia de este evento. El modelo descrito en esta tesis es un modelo de mixtura que usa la distribución Exponencial-Poisson para modelar el tiempo a la ocurrencia del evento de interés en la sub población suceptible al evento de interés. Además se plantea un modelo de regresión logística sobre la probabilidad de ser inmune al evento de interés. Se realiza un estudio de simulación en el cual a través del sesgo porcentual y cobertura se comprobó la buena performancia del modelo. Finalmente, el modelo es aplicado sobre una muestra de clientes morosos de una entidad del sistema financiero Peruano donde el evento de interés es la cancelación de dicha deuda.
  • Thumbnail Image
    Item
    Modelo lineal mixto conjunto de clases latentes aplicado a un conjunto de datos longitudinales del sector salud
    (Pontificia Universidad Católica del Perú, 2018-11-13) Neciosup Vera, Carmen Stéfany; Valdivieso Serrano, Luis Hilmar
    Los modelos lineales mixtos conjuntos de clases latentes, propuestos por Proust-Lima et al. (2015), permiten modelar de manera conjunta un proceso longitudinal y un proceso de supervivencia, calculando también la probabilidad de pertenencia a determinadas clases latentes que puedan existir en la población en estudio. En el presente trabajo se describen los componentes que conforman este modelo, y mediante un estudio de simulación se evalúa y analiza la implementación de su estimación. El modelo se aplica finalmente a un conjunto de datos longitudinales de pacientes diagnosticados con Cáncer de Próstata, permitiéndonos la identificación de clases latentes que se asocian luego con el estadío clínico de los pacientes.