Estadística
Permanent URI for this collectionhttp://98.81.228.127/handle/20.500.12404/757
Browse
2 results
Search Results
Item Modelo de supervivencia de larga duración con riesgos proporcionales y estimación del riesgo base vía splines: modelamiento de abandono de seguros(Pontificia Universidad Católica del Perú, 2021-01-12) Mattos Galarza, Hector; Sal y Rosas Celi, Víctor GiancarloLos modelos de supervivencia, aquellos que tratan de describir el tiempo a la ocurrencia de uno o más eventos, han demostrado tener gran versatilidad para poder modelar distintos tipos de eventos y un alcance mayor al que inicialmente se propuso. Su aplicación varía desde el área de la medicina hasta usos en actividades financieras como análisis de riesgos de activos, entre otros. Este trabajo tiene como motivación el análisis del tiempo de permanencia de un cliente con contrato de póliza de seguros. En esta aplicación, solo una fracción de los clientes son susceptibles a la terminación del contrato y, en este sentido, se requiere que el modelo cuente con la flexibilidad de asumir que no todos los clientes son susceptibles al evento de interés. En este trabajo, se propone un modelo de larga duración asumiendo un modelo de riesgos proporcionales para los clientes susceptibles de abandono y donde la función de riesgo basal de este último se modela vía funciones de splines monótonas. Este trabajo empieza con la definición del modelo, el proceso de estimación de parámetros, escenarios de simulación donde se evalúa el desempeño del proceso de estimación e inferencia y finalmente una aplicación para estudiar los factores asociados con el abandono de clientes en una compañía de seguros en el Perú.Item El modelo de larga duración Weibull-Geométrica(Pontificia Universidad Católica del Perú, 2019-03-20) Torres Salinas, Karina Hesi; Sal y Rosas Celi, Víctor GiancarloLos modelos de larga duración son una extensión de los modelos de supervivencia tradicional y nos permiten modelar una proporción de la población que no llegan a experimentar un evento de interés, incluso después de un largo periodo de seguimiento. En este trabajo se presenta y deduce la distribución de larga duración Weibull-Geométrica y su proceso de estimación e inferencia. Se desarrolló un estudio de simulación con el un de evaluar el desempeño de las estimaciones y determinar si se recuperan los parámetros. Asimismo el modelo fue aplicado a una muestra de clientes que adquirieron y activaron una tarjeta de crédito entre enero a diciembre del año 2015 y donde el principal objetivo del análisis era entender el comportamiento del tiempo hasta la cancelación de la tarjeta de crédito del cliente. Comparamos al modelo de larga duración Weibull-Geométrica con otros modelos de larga duración, Exponencial-Geométrica y Weibull. Los resultados indican que nuestro modelo muestra un mejor ajuste en los datos.