Estadística

Permanent URI for this collectionhttps://hdl.handle.net/20.500.12404/757

Browse

Search Results

Now showing 1 - 10 of 28
  • Thumbnail Image
    Item
    El Modelo de Respuesta Nominal: Aplicación a datos educacionales
    (Pontificia Universidad Católica del Perú, 2019-07-17) Rivera Espejo, José Manuel; Tarazona Vargas, Enver Gerald
    This thesis focuses its e orts on presenting and studying the Nominal Response Model or NRM (Bock, 1972, 1997), in the context of the Item Response Theory (IRT). Simulation studies are carried out to determine the quality of the recovery of the parameters of the model, under the Classic (MML) and Bayesian (MCMC) aproach and nally, the studied model was applied to an random, representative and anonymous sample of 1641 teachers from the Basic Regular Education modality of the english specialty, who were exposed to the Reading-Comprehension sub-test of the \Concurso de Nombramiento 2015". Related to the simulation, we found the bayesian method is a good substitute for the classic counterpart, because it recovers in a similarly satisfactory fashion the parameters of the items; however, the main disadvantage was that the process was between 620 to 14; 100 times slower than the classical approach, despite the special emphasis on making the MCMC processes parrallel. Related to the results of the implementation of the model on real data, the NRM: (i) it facilitates the recovery of a greater proportion of information available in the items, compared to dichotomous response models (Bock, 1972; Thissen, 1976; Levine y Drasgow, 1983; Thissen y Steinberg, 1984), (ii) it allows to nd the implicit order in initially not ordered categorical data (Samejima, 1988; Bock, 1997) and (iii) it provided relevant information for the examination of the quality of an item (Thissen et al., 1989), specially in two fronts: (a) it allowed the identi cation of useless or forced alternatives and (b) it allowed the identi cation of alternatives that could be collapsed, given that these alternatives registered a similar topics.
  • Thumbnail Image
    Item
    El modelo de larga duración Weibull-Geométrica
    (Pontificia Universidad Católica del Perú, 2019-03-20) Torres Salinas, Karina Hesi; Sal y Rosas Celi, Víctor Giancarlo
    Los modelos de larga duración son una extensión de los modelos de supervivencia tradicional y nos permiten modelar una proporción de la población que no llegan a experimentar un evento de interés, incluso después de un largo periodo de seguimiento. En este trabajo se presenta y deduce la distribución de larga duración Weibull-Geométrica y su proceso de estimación e inferencia. Se desarrolló un estudio de simulación con el un de evaluar el desempeño de las estimaciones y determinar si se recuperan los parámetros. Asimismo el modelo fue aplicado a una muestra de clientes que adquirieron y activaron una tarjeta de crédito entre enero a diciembre del año 2015 y donde el principal objetivo del análisis era entender el comportamiento del tiempo hasta la cancelación de la tarjeta de crédito del cliente. Comparamos al modelo de larga duración Weibull-Geométrica con otros modelos de larga duración, Exponencial-Geométrica y Weibull. Los resultados indican que nuestro modelo muestra un mejor ajuste en los datos.
  • Thumbnail Image
    Item
    Análisis bayesiano de modelos de clases latentes para variables politómicas: Confianza hacia instituciones públicas
    (Pontificia Universidad Católica del Perú, 2019-02-11) Cruz Sarmiento, Marylía Paola; Valdivieso Serrano, Luis Hilmar
    El modelo de análisis de clases latentes tiene como finalidad describir una variable no observable a través del agrupamiento de los individuos en base a sus patrones de respuestas. La estimación en este modelo se puede realizar mediante el algoritmo de Esperanza-Maximización (EM) y su desarrollo para el caso politómico se encuentra implementado en el paquete poLCA de R. Desde el punto de vista bayesiano, esta estimación ha sido hasta el momento implementada sólo para el caso de variables dicotómicas. En este trabajo, se busca extender este ultimo aporte para el caso politómico, haciendo uso del muestrador de Gibbs. La aplicación del modelo de análisis de clases latentes, bajo el enfoque bayesiano aquí desarrollado, se realizó sobre un conjunto de datos reales relacionados con la con fianza hacia 21 instituciones públicas en una encuesta para Lima Metropolitana. En general, se identificaron tres grupos de encuestados seg un sus niveles de confianza institucional, los cuales se analizaron luego en relación a otras variables.
  • Thumbnail Image
    Item
    Modelo G-DINA aplicado al diagnóstico de desórdenes mentales
    (Pontificia Universidad Católica del Perú, 2019-02-11) Villena Guzmán, Denisse; Tarazona Vargas, Enver Gerald
    Actualmente, uno de los modelos de diagnóstico cognitivo (MDC) más usados es el modelo DINA. Sin embargo, este modelo presenta varias restricciones que hacen que en muchas ocasiones, no sea el que mejor se ajusta a la realidad. En ese contexto, nace una generalización del modelo DINA, denominado G-DINA (Generalized deterministic input, noisy and gate). En el presente estudio se presentan los fundamentos y propiedades del modelo G-DINA y su aplicación en un área en el que su uso todavía no es muy común: la psicología. Así, se evaluaron los resultados de una muestra de pacientes de un hospital general de Lima a los que se les aplicó el test SRQ-18 que evalúa la presencia de desórdenes mentales. Se muestra el proceso de selección del mejor modelo para cada ítem, los resultados de los parámetros obtenidos, los diagnósticos para los 10 primeros pacientes y una distribución de los perfiles de estos pacientes. Finalmente se presenta un estudio de simulación que tiene por finalidad estudiar el efecto del tamaño de muestra en la estimación de los parámetros en el contexto de la aplicación de este estudio.
  • Thumbnail Image
    Item
    Modelo secuencial con aplicación a la medición del rendimiento estudiantil
    (Pontificia Universidad Católica del Perú, 2019-02-04) Mejía Campos, Luis Ángel; Tarazona Vargas, Enver Gerald
    En este trabajo se presenta el Modelo Secuencial para datos politómicos ordinales de la teoría de respuesta al ítem y sus características. De forma específi ca se estudia el Modelo Secuencial Logístico de 2 parámetros (2PL-SM). La estimación de este modelo se realiza utilizando Métodos de Cadenas de Markov de Montecarlo (MCMC), los cuales fueron implementados en R y WinBUGS. Se realizó un estudio de simulación con el objetivo de estudiar la precisión en la recuperación de parámetros observándose resultados apropiados según los índices de precisión utilizados. El Modelo Secuencial en estudio fue luego aplicado a la prueba de escritura de la Evaluación Muestral 2013 del Ministerio de Educación, evaluación que fue aplicada a una muestra de 4327 estudiantes de sexto grado de primaria de todo el país. Con la aplicación del modelo a la prueba se pudo determinar que en general esta contiene ítems cuyas di ficultades son bajas y que, para los estudiantes, el enfrentarse a esta prueba no debería resultarles complicado.
  • Thumbnail Image
    Item
    El modelo de larga duración Exponencial-Poisson
    (Pontificia Universidad Católica del Perú, 2018-12-03) Gonzales Rodriguez, Julia Elena; Sal y Rosas Celi, Víctor Giancarlo
    En esta tesis se introducir y estudiar el modelo de supervivencia de larga duración Exponencial-Poisson. Este modelo permite estudiar el tiempo hasta la ocurrencia de un evento de interés cuando se asume que existe una fracción de unidades de la población inmunes a la ocurrencia de este evento. El modelo descrito en esta tesis es un modelo de mixtura que usa la distribución Exponencial-Poisson para modelar el tiempo a la ocurrencia del evento de interés en la sub población suceptible al evento de interés. Además se plantea un modelo de regresión logística sobre la probabilidad de ser inmune al evento de interés. Se realiza un estudio de simulación en el cual a través del sesgo porcentual y cobertura se comprobó la buena performancia del modelo. Finalmente, el modelo es aplicado sobre una muestra de clientes morosos de una entidad del sistema financiero Peruano donde el evento de interés es la cancelación de dicha deuda.
  • Thumbnail Image
    Item
    Modelo de regresión a la media simplex inflacionada para proporciones
    (Pontificia Universidad Católica del Perú, 2018-11-15) Chámpac Flores, Juan Carlos; Bayes Rodríguez, Cristian Luis
    El presente trabajo de tesis propone el modelo de regresión a la media simplex inflacionada, que permite modelar variables aleatorias continuas limitadas en el intervalo cerrado [0; 1] al considerar un conjunto de ecuaciones de regresión para estimar la media de la respuesta y los parámetros que modelan las probabilidades de los valores extremos 0 y 1. Asimismo, se desarrolla un estudio de simulación con el fin de evaluar si el método propuesto permite recuperar los parámetros del modelo desde el punto de vista de la estadística clásica. Por otro lado, se desarrolla la aplicación del modelo para determinar el grado de dolarización de empresas que registran deudas en el Sistema Financiero, y para evaluar el desempeño del mismo, se compara contra el modelo de regresión a la media beta inflacionada. Los resultados muestran un mejor ajuste del modelo propuesto en esta tesis.
  • Thumbnail Image
    Item
    Análisis de influencia bajo inferencia bayesiana en evaluaciones escolares de altas consecuencias
    (Pontificia Universidad Católica del Perú, 2018-07-30) Christiansen Trujillo, Andrés Guillermo; Bayes Rodríguez, Cristian Luis
    La presente investigación estudia una metodología para la detección de observaciones atípicas mediante un análisis de influencia bajo la perspectiva de la inferencia bayesiana. Se utiliza la medida de phi-divergencia y el estimador de Monte Carlo, derivado de ésta, trabajados previamente por Peng y Dey (1995), para el cálculo de las divergencias Kullback-Leibler, distancia rectilínea y ji-cuadrado. Además, en el presente trabajo se busca realizar este análisis de influencia en evaluaciones de altas consecuencias (evaluaciones cuyos resultados tienen un alto impacto en la vida de los estudiantes o docentes). El estudio de simulación revela que es posible recuperar observaciones previamente distorsionadas como atípicas. Finalmente, se aplica la metodología a una evaluación realizada por el Ministerio de Educación. Esta aplicación revela que la metodología estudiada es capaz de identificar escuelas con resultados no esperados dadas sus condiciones y resultados anteriores.
  • Thumbnail Image
    Item
    Inferencia bayesiana en el modelo de regresión beta rectangular
    (Pontificia Universidad Católica del Perú, 2018-05-07) Calderón Pozo, Francisco German; Bayes Rodríguez, Cristian Luis
    Se conoce que el modelo lineal normal no es apropiado para situaciones en la que la variable respuesta es una proporción que solo toma valores en un rango limitado (0; 1), pues, se pueden obtener valores ajustados para la variable de inter es que exceden sus límites inferior y superior. Ante dicha situación, una propuesta es utilizar la distribución beta ya que es bastante flexible para modelar proporciones. Este modelo de regresión, sin embargo, puede ser influenciado por la presencia de valores atípicos o extremos. Debido a ello, se ha propuesto en la literatura, un modelo de mayor robustez llamado modelo de regresión beta rectangular, el cual permite una mayor incidencia de tales valores. El objetivo general de la tesis es estudiar las propiedades, estimar y aplicar a un conjunto de datos reales el modelo de regresión beta rectangular desde el punto de vista de la estadística bayesiana. Para cumplir con el objetivo planteado, se estudian las características y propiedades de las distribuciones beta y beta rectangular. Luego, se desarrolla el análisis bayesiano del modelo de regresión beta rectangular considerando las distribuciones a priori y a posteriori, los criterios de selección de modelos y simulaciones de Montecarlo v a cadenas de Markov. También, se realizan estudios de simulación para demostrar que el nuevo modelo es m as robusto que el modelo de regresión beta. Adicionalmente, se presenta una aplicación para mostrar la utilidad del modelo de regresión beta rectangular.
  • Thumbnail Image
    Item
    Estimación bayesiana de efectos de red: el modelo Logit mixto
    (Pontificia Universidad Católica del Perú, 2017-10-02) Chahuara Vargas, Paulo Roberto; Bayes Rodríguez, Cristian Luis
    Los efectos o externalidades de red son factores que pueden condicionar las decisiones de contratación de los consumidores en favor de empresas ya establecidas y en contra de los nuevos competidores, pudiendo limitar la competencia efectiva y potencial de los mercados, en especial, en aquellas industrias donde el número de empresas es bajo y la entrada de nuevos competidores es poco frecuente. Por ello, es importante verificar su existencia y la magnitud de sus efectos sobre las decisiones de compra de los consumidores con el objetivo de justificar o establecer medidas que impulsen una competencia más equilibrada entre las empresas. Además, teniendo en consideración que los consumidores pueden tener cierto grado de heterogeneidad en sus comportamientos de adquisición, también resulta relevante estudiar el grado de diferenciación de los efectos de red entre los consumidores a fin de mejorar las políticas que fomenten la competencia. Este trabajo tiene por objetivo estimar un modelo logit mixto bajo el enfoque de la inferencia bayesiana, para estudiar empíricamente la existencia y heterogeneidad de los efectos de red sobre las decisiones de contratación de los consumidores en la industria de telefonía móvil peruana. El análisis se hace con base a una muestra que combina información de la Encuestas Residencial de Servicios de Telecomunicaciones (ERESTEL) del a˜no 2015 e información de las empresas operadoras del servicio de telefonía móvil. Los resultados de las estimaciones realizadas sugieren que los efectos de red tendrían un condicionamiento importante sobre las decisiones de contración del servicio de telefonía móvil, además de presentar un grado de heterogeneidad estadísticamente significativo en la magnitud de sus efectos.