Estadística
Permanent URI for this collectionhttp://98.81.228.127/handle/20.500.12404/757
Browse
3 results
Search Results
Item Endpoint-inflated beta-binomial regression for correlated count data(Pontificia Universidad Católica del Perú, 2021-03-29) Fazio Luna, Boris Manuel; Sal y Rosas Celi, Víctor GiancarloEl modelo de regresión binomial con in acción en los extremos permite modelar datos de conteo acotados en los que una alta proporción de las observaciones se encuentra en los extremos. Extendemos el modelo considerando una función de enlace de logit ordenado, la cual aprovecha la información de orden implícita en las probabilidades de in acción y exploramos el uso de efectos aleatorios y marginalización para manejar la presencia de observaciones repetidas. Empleamos un conjunto de datos previamente analizado en la literatura mediante un modelo de regresión binomial con in acción en los extremos que emplea el enlace softmax para mostrar el mejor ajuste logrado por nuestro modelo.Item El modelo de larga duración Exponencial-Poisson(Pontificia Universidad Católica del Perú, 2018-12-03) Gonzales Rodriguez, Julia Elena; Sal y Rosas Celi, Víctor GiancarloEn esta tesis se introducir y estudiar el modelo de supervivencia de larga duración Exponencial-Poisson. Este modelo permite estudiar el tiempo hasta la ocurrencia de un evento de interés cuando se asume que existe una fracción de unidades de la población inmunes a la ocurrencia de este evento. El modelo descrito en esta tesis es un modelo de mixtura que usa la distribución Exponencial-Poisson para modelar el tiempo a la ocurrencia del evento de interés en la sub población suceptible al evento de interés. Además se plantea un modelo de regresión logística sobre la probabilidad de ser inmune al evento de interés. Se realiza un estudio de simulación en el cual a través del sesgo porcentual y cobertura se comprobó la buena performancia del modelo. Finalmente, el modelo es aplicado sobre una muestra de clientes morosos de una entidad del sistema financiero Peruano donde el evento de interés es la cancelación de dicha deuda.Item An application of discrete time survival models to analyze student dropouts at a private university in Peru(Pontificia Universidad Católica del Perú, 2016-06-20) Pebes Trujillo, Miguel Raúl; Sal y Rosas Celi, Víctor GiancarloDiscrete-time survival models are discussed and applied to the study of which factors are associated with student dropouts at a private university in Lima, Per_u. We studied the characteristics of 26; 790 incoming students enrolled between 2004 and 2012 in all the under-graduate programs at the University. The analysis include the estimation of the survival and hazard functions using the Kaplan-Meier method and the _tting of parametric models using the Cox proportional hazards regression and the Logistic regression for survival analysis, this last one, in order to include time varying variables as predictors. During the period of analysis, the cumulative probability of remain at the University after _ve years was 73.7% [95% CI: 73.1% - 74.4%]. In any period the hazard is greater than 4.4% and this highest value is reached in the 3rd semester. In a multivariate analysis, we found that academic factors (area of study, type of admission, standardized academic performance index, and the percentage of passed credits); economic factors (type of residence, and payment scale); and sociodemographic factors (mother education level, indicators of whether or not parents are alive, and the age of the student) were associated with the risk of dropout.