Estadística

Permanent URI for this collectionhttp://98.81.228.127/handle/20.500.12404/757

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Análisis de votos electorales usando modelos de regresión para datos de conteo
    (Pontificia Universidad Católica del Perú, 2013-04-08) Contreras Vilca, Norma; Bazán Guzmán, Jorge Luis
    Se presentan dos modelos de regresión para datos de conteo: el modelo de regresión Poisson y modelo de regresión Binomial Negativa dentro del marco de los Modelos Lineales Generalizados. Los modelos son aplicados inicialmente a un conjunto de datos conocido como ((The Aircraft Damage)) presentado en Montgomery (2006) referido al número de daños en las aeronaves durante la guerra de Vietnam. La principal aplicación de este trabajo sería el análisis de los votos obtenidos por el candidato Ollanta Humala Tasso en los resultados de las ((Elecciones Generales y Parlamento Andino 2011)), analizamos los datos de la primera vuelta a nivel de regiones considerando diversos predictores. Ambos conjunto de datos, presentan sobredispersión, esto es una varianza mayor que la media, bajo estas condiciones el modelo de Regresión Binomial Negativa resulta m as adecuado que el modelo de Regresión Poisson. Adicionalmente, se realizaron estudios de diagnósticos que confirman la elección del modelo Binomial Negativa como el más apropiado para estos datos.
  • Thumbnail Image
    Item
    Modelos de regresión binaria Skew probit para el calculo de probabilidad de default en el ámbito del sistema financiero
    (Pontificia Universidad Católica del Perú, 2013-02-05) Pantoja Marin, Luis; Bazán Guzmán, Jorge Luis
    La presente investigación se fundamenta en el uso o aplicación de Modelos Skew Probit con enlace asimétrico desde un enfoque Bayesiano. Los modelos a usar incorporan la posibilidad de usar enlaces asimétricos para estimar la probabilidad de y i =1 en muestras no balanceadas (alta proporción de ceros y por ende pequeña proporción de unos). La formulación general de esto modelos es debida a Bazán, Bolfarine y Branco (2010). Aunque en estos modelos inicialmente su computación es complicada se usaron Cadenas de Markov por Monte Carlo (MCMC) o muestreo Gibbs (para la aplicación de estos procedimientos ver Carlin y Polson, 1992) que hacen simple la formulación del modelo y por tanto simple su implementación usando el software WinBugs (los códigos de los diferentes modelos utilizados fueron obtenidos en el programa BRMUW propuesto por Bazán y Bayes, 2010). De acuerdo al análisis y estudio de aplicación realizado sobre una muestra de clientes de préstamos pertenecientes a una entidad micro financiera, aquellos modelos Skew Probit BBB y Estándar presentan los mejores indicadores de eficiencia. El análisis sobre datos reales señala que el modelo tradicional Probit presenta un 56.6% (371/664) de mala clasificación versus los modelos Estándar y BBB que en promedio muestran dicho indicador alrededor de 43% (290/664). El análisis mediante curvas COR (Receiver Operating Characteristic) ratifica lo mencionado; el área debajo de las curvas superan el 0.74 de 1 para el modelo BBB, mientras que dicho dato es de 0.70 para el caso del modelo simétrico tradicional probit. Por tanto la sensibilidad y especificidad (eficiencia) es mayor para aquellos modelos Skew Probit (mejor modelo BBB). Dentro de los modelos con Enlaces Asimétricos los modelos (SP) BBB y Estándar son los que presentan mejores indicadores de ajuste e información as__ como mejoran la sensibilidad y especificidad de un determinado modelo. Finalmente, se pretende la sistematización de la propuesta a nivel de la entidad micro financiera y su aplicación en la estimación de la probabilidad de default de créditos pero aplicado en todos los tipos de créditos.