Estadística

Permanent URI for this collectionhttp://98.81.228.127/handle/20.500.12404/757

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Inferencia bayesiana en un modelo de regresión cuantílica autorregresivo
    (Pontificia Universidad Católica del Perú, 2021-06-14) Quintos Choy, Manuel Alejandro; Bayes Rodríguez, Cristian Luis
    El modelo de regresión cuantílica autorregresivo permite modelar el cuantil condicional de una serie de tiempo a partir de los rezagos de la serie. En el presente trabajo se presenta la estimación de este modelo desde la perspectiva bayesiana asumiendo que los errores se distribuyen según la distribución asimétrica de Laplace (ALD). Luego, el proceso de generación de muestras de la distribución a posteriori es simplificado utilizando una representación estocástica de la ALD propuesta por Kotz et al. (2001) y el algoritmo de datos aumentados de Tanner y Wong (1987), siguiendo la propuesta de Kozumi y Kobayashi (2011), así como las adaptaciones para el modelamiento de series de tiempo de Cai et al. (2012) y Liu y Luger (2017). Los estudios de simulación demuestran que el supuesto sobre la distribución del término error no es limitante para estimar el cuantil condicional de series de tiempo con otras distribuciones. El modelo es aplicado en la predicción del Valor en Riesgo (VaR) en la serie de tiempo de los retornos diarios de la tasa de cambio de PEN a USD, y sus resultados son comparados con las predicciones obtenidas por las metodologías RiskMetrics, GARCH(1,1) y CAVIaR. Al respecto, la evidencia numérica permite concluir que el modelo QAR es una alternativa válida para estimar el VaR.
  • Thumbnail Image
    Item
    Modelo de regresión semiparamétrico robusto
    (Pontificia Universidad Católica del Perú, 2021-05-11) Esquivel Segura, Henry John; Bayes Rodríguez, Cristian Luis
    El presente trabajo de tesis presenta un modelo de regresión semiparamétrico con errores t-Student, que permite estudiar el comportamiento de una variable dependiente dado un conjunto de variables explicativas cuando los supuestos de linealidad y normalidad no se cumplen. La estimación de los parámetros se realiza bajo el enfoque bayesiano a través del algoritmo de Gibbs. En el estudio de simulación se observa que el modelo propuesto es más robusto ante la presencia de valores atípicos que el usual modelo regresión semiparamétrico normal. Asimismo se presenta una aplicación con datos reales para ilustrar esta característica.
  • Thumbnail Image
    Item
    Modelamiento del tiempo a la ocurrencia de un evento con tiempos discretos
    (Pontificia Universidad Católica del Perú, 2021-01-18) Huertas Quispe, Anthony Enrique; Bayes Rodríguez, Cristian Luis
    En este trabajo de tesis, se plantea estudiar el tiempo a la ocurrencia de un evento en un proceso discreto. Para ello, se considera un modelo mixtura de fracción de cura sobre una población segmentada en dos tipos de individuos: sujetos curados, o también denominados sobrevivientes a largo plazo, haciendo referencia a aquellos sujetos que no alcanzarán el evento de interés en estudio; y sujetos no curados, o también denominados sujetos susceptibles, quienes en un tiempo específico, experimentarán dicho evento de interés. Los objetivos principales de esta tesis, son el de estimar la fracción de cura, la cual está definida como la proporción de individuos curados al final del estudio, y estimar el tiempo de falla para los individuos susceptibles, entendiéndose como el tiempo a la ocurrencia del evento. Este análisis se llevará a cabo con la presencia de covariables y datos censurados, siendo la simulación e inferencia de los datos efectuados vía el software estadístico R, en donde los procesos de simulación abordarán distintos escenarios para evaluar la performance del modelo propuesto.
  • Thumbnail Image
    Item
    Métodos de selección de variables bajo el enfoque bayesiano para el modelo lineal normal
    (Pontificia Universidad Católica del Perú, 2021-01-18) Blas Oyola, Sthip Frank; Bayes Rodríguez, Cristian Luis
    En muchos casos prácticos, al realizar un análisis de regresión, se cuenta con un gran número de potenciales variables explicativas de las cuáles sólo algunas serán importantes para explicar la variable respuesta. Por lo tanto, un problema importante para la construcción de un modelo de regresión es encontrar un adecuado conjunto de variables explicativas. A los métodos que lidian con este problema se les denomina métodos de selección de variables. En el presente proyecto de tesis, se estudiarán tres métodos de selección de variables bajo inferencia bayesiana para el modelo de regresión lineal normal los cuales fueron propuestos por George y McCulloch (1993), Kuo y Mallick (1998) y Dellaportas et al. (2002). Estos métodos, a diferencia de los métodos tradicionales, consideran la selección de variables dentro del mismo modelo, por ejemplo, introduciendo variables latentes que indiquen la presencia o ausencia de una variable explicativa. Se realizaron comparaciones de estos métodos bayesianos con los métodos Lasso y Stepwise por ser los más tradicionales. A través de un estudio con datos simulados, en diversos escenarios se observa que los métodos bayesianos permiten una adecuada selección de las variables explicativas. Adicionalmente se presentan los resultados de una aplicación con datos reales.