Matemáticas (Mag.)
Permanent URI for this collectionhttp://98.81.228.127/handle/20.500.12404/769
Browse
Item Dominios de Fatou Bieberbach generados por automorfismos(Pontificia Universidad Católica del Perú, 2022-12-15) Puchoc Quispe, Jose Luis; Rosas Bazan, Rudy JoseEn la presente tesis se estudia una forma de encontrar dominios de Fatou-Bieberbach, a partir de un automorfismo de Cn. Específicamente estos dominios serán las cuencas de atracción hacia un punto fijo del automorfismo. El trabajo está basado en la investigación desarrollada por Jean Pierre Rosay y Walter Rudin en [RR88]. En el primer capítulo se desarrolla los preliminares que necesitamos para la demostración de los teoremas de los capítulos posteriores: básicamente, el estudio de aplicaciones holomorfas y teoría espectral de operadores lineales. En el segundo capítulo se prueba una versión débil del teorema principal de este trabajo. Este teorema nos brinda varios ejemplos interesantes de dominios de Fatou-Bieberbach en C2. Finalmente, en el capítulo 3 se desarrolla el teorema principal de la tesis. Se prueba que si un automorfismo tiene un punto fijo y en ese punto fijo su radio espectral es menor que uno, entonces la cuenca de atracción del punto fijo vía el autotomorfismo es un dominio de Fatou-Bieberbach.Item Minimal possible counterexamples to the two-dimensional Jacobian Conjecture(Pontificia Universidad Católica del Perú, 2019-06-12) Horruitiner Mendoza, Rodrigo Manuel; Valqui Hasse, Christian HolgerLet K be an algebraically closed field of characteristic zero. The Jacobian Conjecture (JC) in dimension two stated by Keller in [8] says that any pair of polynomials P;Q ∈ L := K[x; y] with [P;Q] := axPayQ - axQayP ∈ Kx (a Jacobian pair ) defines an automorphism of L via x-> P and y -> Q. It turns out that the Newton polygons of such a pair of polynomials are closely related, and by analyzing them, much information can be obtained on conditions that a Jacobian pair must satisfy. Specifically, if there exists a Jacobian pair that does not define an automorphism (a counterexample) then their Newton polygons have to satisfy very restrictive geometric conditions. Based mostly on the work in [1], we present an algorithm to give precise geometrical descriptions of possible counterexamples. This means that, assuming (P;Q) is a counterexample to the Jacobian Conjecture with gcd(deg(P); deg(Q)) = k, we can generate the possible shapes of the Newton Polygon of P and Q and how it transforms under certain linear automorphisms. By analyzing the minimal possible counterexamples, we sketch a path to increase the lower bound of max(deg(P); deg(Q)) to 125 for a minimal possible counterexample to the Jacobian Conjecture.