Estudio local y global de un sistema tipo Korteweg-De Vries-Burger
Abstract
Las ecuaciones de Boussinesq son un tipo de ecuaciones derivadas de las ecuaciones de Euler y que modelan la propagación sensiblemente bidimensional de ondas largas de gravedad y de pequeña amplitud sobre la super cie de un canal. Un modelo de este tipo en un canal de fondo plano está dado por el sistema (P1)donde las variables adimensionales y w representan respectivamente, la de flección de la super ficie libre del líquido respecto a su posición de reposo y la velocidad horizontal del fluido a una profundidad de raíz cuadrada 2/3h; donde h es la profundidad del fluido en reposo. Dicho modelo es desde luego un sistema de ecuaciones diferenciales de Korteweg-de Vries acopladas a través de los efectos dispersivos y los términos no lineales. Por otro lado, el sistema (P1) al estar referido a un fl uido incompresible no viscoso no recoge los efectos de la viscosidad ; sin embargo al ser desacoplado podemos introducir tales efectos, resultando un sistema del tipo Korteweg-de Vries - Burger dado por (P2)
En este trabajo se estudia el PVI asociado a (P2) en los espacios Hs estableciendo su buena formulación local para s > 3/2 y buena formulación global para s >= 2; en este último caso se muestra adicionalmente que la solución global decae asíntoticamente en el tiempo. Finalmente, se muestra que el PVI asociado a (P1) está bien formulado localmente como consecuencia de la buena formulación local de (P2).
Temas
Ecuaciones de Korteweg-de Vries
Para optar el título de
Maestro en Matemáticas