Un enfoque bayesiano para estimar las temperaturas mínimas extremas a través de un modelo geoestadístico GEV
Abstract
El desarrollo sostenible de un país puede verse limitado debido a cambios graduales del clima y eventos hidrometeorológicos extremos, que afectan de manera recurrente la infraestructura, medios de vida así como las inversiones. El Perú es uno de los países más afectados por la variabilidad y cambio climático, por tanto la gestión del riesgo climático, entre ellas el estudio de temperaturas extremas, contribuye a reducir impactos socio-económicos y ambientales en las inversiones público-privadas. En este contexto, en esta tesis se propone aplicar un modelo bayesiano geoestadístico usando una distribución generalizada para valores extremos (GEV) para estimar y predecir las temperaturas mínimas extremas en el Perú en el 2012. Asimismo, dado el alto costo computacional que ameritan los modelos bayesianos espaciales, se propone usar el enfoque de ecuaciones diferenciales parciales estocásticas (SPDE) y para la estimación de los parámetros se usa el método integrado de aproximación anidada de Laplace (INLA). El modelo propuesto permite estimar las temperaturas mínimas extremas en el Perú, con el propósito de mejorar la gestión de riesgo climático
Temas
Cambios climáticos
Temperaturas bajas--Medición
Temperaturas bajas--Modelos matemáticos
Temperaturas bajas--Medición
Temperaturas bajas--Modelos matemáticos
Para optar el título de
Maestro en Estadística
Collections
The following license files are associated with this item: