Enhanced predictive modelling of toxicities in gynecologic cancer patients treated with high dose rate brachytherapy using SyedNeblett or Fletcher-Suit-Delclos tandem and ovoid applicators: a machine learning perspective

dc.contributor.advisorPalacios Fernández, Daniel Francisco
dc.contributor.authorPortocarrero Bonifaz, Andres
dc.date.accessioned2025-02-10T14:22:21Z
dc.date.created2024
dc.date.issued2025-02-10
dc.description.abstractThis doctoral thesis presents an advanced predictive modeling approach for assessing toxicities in gynecologic cancer patients treated with high-dose-rate (HDR) brachytherapy. Using machine learning algorithms such as Support Vector Machines, Random Forest, and Neural Networks, the study aims to enhance the accuracy of toxicity predictions, thereby allowing the clinician to optimize treatment plans and improving patient outcomes. This research focuses on patients treated with SyedNeblett or Fletcher-Suit-Delclos tandem and ovoid applicators, commonly used in brachytherapy procedures. Objectives include comparing dosimetric profiles and associated toxicities between the two applicator types, investigating the predictive value of non-dosimetric factors, evaluating the performance of various machine learning models against traditional statistical methods, and identifying the most effective predictive model through rigorous cross-validation and feature selection techniques. A comprehensive dataset, one of the most sizeable in this topic, serves as the basis for training and testing the models. By integrating demographic, treatment, and tumor-related data, the study aims to develop ML models that offer a superior performance compared to existing methods. The findings highlight the potential of machine learning to revolutionize brachytherapy planning by providing physicians with precise, patient-specific risk assessments, ultimately enhancing the quality of care for gynecologic cancer patients. This research not only advances the field of radiation oncology but also contributes valuable insights into the integration of machine learning in clinical practice, paving the way for more effective and personalized cancer treatments.
dc.description.abstractEsta tesis doctoral propone un método innovador para predecir toxicidades en pacientes con cáncer ginecológico tratados con braquiterapia de alta tasa de dosis (HDR) y radioterapia externa (EBRT). Combinando conocimientos de Física de Radiaciones Ionizantes, Oncología y Ciencia de Datos, se emplean algoritmos de Machine Learning, como Support Vector Machines, Random Forest y Redes Neuronales, para entrenar y desarrollar modelos multivariables que integran variables de dosis de radiación, datos demográficos, factores clínicos y características del tratamiento, entre otros. En primer lugar, el estudio, basado en una de las bases de datos más grandes utilizadas en este campo, con más de 12 años de recolección de datos, compara los aplicadores Syed-Neblett y Fletcher-Suit-Delclos, destacando la importancia de crear modelos multivariables en lugar de depender únicamente de la práctica histórica de utilizar tolerancias de dosis derivadas de estudios poblacionales. Posteriormente, se explora el uso del Machine Learning como herramienta predictiva en pacientes con cáncer ginecológico tratados con HDR y EBRT, realizando un análisis exhaustivo sobre cómo entrenar estos modelos de manera óptima para apoyar tratamientos de radiación más personalizados y efectivos. Los hallazgos subrayan el potencial del Machine Learning para revolucionar la planificación de la braquiterapia al proporcionar a los médicos evaluaciones de riesgo precisas y adaptadas a cada paciente, mejorando así la calidad de la atención en pacientes con cáncer ginecológico.
dc.identifier.urihttp://hdl.handle.net/20.500.12404/29960
dc.language.isoeng
dc.publisherPontificia Universidad Católica del Perúes_ES
dc.publisher.countryPE
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/2.5/pe/
dc.subjectInteligencia artificial
dc.subjectCáncer--Radioterapia
dc.subjectBraquiterapia por radioisótopos
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#1.03.00
dc.titleEnhanced predictive modelling of toxicities in gynecologic cancer patients treated with high dose rate brachytherapy using SyedNeblett or Fletcher-Suit-Delclos tandem and ovoid applicators: a machine learning perspective
dc.typeinfo:eu-repo/semantics/doctoralThesis
renati.advisor.cext001490304
renati.advisor.orcidhttps://orcid.org/0000-0001-8248-347X
renati.author.dni72848992
renati.discipline533018
renati.jurorPereyra Anaya, Patrizia Edel
renati.jurorPalacios Fernández, Daniel Francisco
renati.jurorBeltrán Castañón, César Armando
renati.jurorMorales Paliza, Manuel Angel
renati.jurorSilva, Scott
renati.levelhttp://purl.org/pe-repo/renati/level#doctor
renati.typehttps://purl.org/pe-repo/renati/type#tesis
thesis.degree.disciplineFísicaes_ES
thesis.degree.grantorPontificia Universidad Católica del Perú. Escuela de Posgradoes_ES
thesis.degree.levelDoctoradoes_ES
thesis.degree.nameDoctor en Físicaes_ES

Files

Original bundle

Now showing 1 - 2 of 2
No Thumbnail Available
Name:
PORTOCARRERO_BONIFAZ_ANDRES.pdf
Size:
2.39 MB
Format:
Adobe Portable Document Format
Description:
Texto completo
No Thumbnail Available
Name:
PORTOCARRERO_BONIFAZ_ANDRES_T.pdf
Size:
14.32 MB
Format:
Adobe Portable Document Format
Description:
Reporte de originalidad

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections