Estudio de un magnetrón utilizando el método de elementos finitos
Date
2021-02-01
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Pontificia Universidad Católica del Perú
Abstract
Magnetron sputtering system is a technique that consists in extracting atoms from a target
material by collisions of energetic ions of an inert gas. It is widely used in semiconductor industries
and materials processing research for developing thin films by deposition. During this
process a low temperature capacitively coupled plasma is generated near the cathode and several
variations of the properties of this plasma can affect the thin film deposition process and
quality. An approach to study these types of systems is by computational modeling. The use
of robust computational codes that can handle complicated geometries and can solve complex
systems of differential equations. In this present project we aim to model numerically a system
of magnetrons developed at the Materials Science and Renewable Energies (MatER) laboratory.
Using the geometry measurements and the material properties of each component taken in
the laboratory, a CAD geometry was developed. Furthermore, the electric and magnetic fields
are solved for the geometry configuration and, by implementing a Monte Carlo simulation, the
electron trajectories and velocity distributions in the system are calculated. Finally, we use a
multi-fluid model to solve a simplified system of a 1 dimensional capacitively coupled plasma
and recover the system properties. The method to solve the respective system of equations is
the finite element method implemented in the software COMSOL Multiphysics.
Description
Keywords
Método de elementos finitos, Películas delgadas, Método de Monte Carlo
Citation
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess