Propuesta de mejora de la priorización de pasivos ambientales mineros en el Perú mediante una metodología basada en inteligencia artificial con Grey Systems

dc.contributor.advisorDelgado Villanueva, Kiko Alexi
dc.contributor.authorBerrospi Jorge, Bryan Rodrigo
dc.date.accessioned2020-09-11T22:58:32Z
dc.date.available2020-09-11T22:58:32Z
dc.date.created2020
dc.date.issued2020-09-11
dc.description.abstractLa minería es desde hace unas décadas una parte fundamental del desarrollo económico en este país, dicho desarrollo trajo consigo muchas cosas positivas; sin embargo, debido a la poca preocupación ambiental que existía hasta hace unos años, se generaron aspectos negativos precisamente en este ámbito, como son los pasivos ambientales. Estos pasivos se generaron debido a que no existía una legislación que regulara el cese o finalización de una operación minera, por lo cual, en muchas ocasiones al acabar la operación se abandonaba las labores tal como estaban, generando así un riesgo para la salud y seguridad humana así también como para la integridad de los ecosistemas. En la actualidad se han registrado un total de 8448 pasivos ambientales a lo largo del territorio nacional, afortunadamente existe una preocupación por parte del estado para poder tratar esta problemática, habiendo creado una metodología de clasificación de pasivos ambientales para poder priorizarlos debido a su importancia; sin embargo, esta metodología se basa en estadística y teniendo en cuenta que en la actualidad se existen otros métodos de clasificación, esta tesis se propone plantear una metodología basada en inteligencia artificial con grey systems para mejorar la priorización de pasivos ambientales mineros en el Perú. La metodología de Grey Clustering está basada en inteligencia artificial, la cual es una combinación de matemática con programación para el tratamiento de datos, con dicha metodología se procesó la información obtenida de la Dirección General de Asuntos Ambientales Mineros (DGAAM) del Ministerio de Energía y Minas, obteniendo una clasificación alternativa, nuevas puntuaciones para los pasivos además de nuevos rangos para clasificarlos según el nivel de riesgo. Se concluyó que con la nueva clasificación los pasivos que pertenecen al nivel de riesgo muy alto disminuyen en un 97% al utilizar la metodología de Grey Clustering y la clasificación porcentual, mientras que los que los pasivos que pertenecen al nivel de riesgo alto aumentan en un 42% con la nueva clasificación. Cabe destacar que la metodología y clasificación planteadas en este trabajo aún se encuentra en análisis, por lo que los resultados presentados en esta tesis son de manera preliminar y estos aún pueden ser mejorados.es_ES
dc.description.abstractMining has been a fundamental part of economic development in this country for a few decades, this development brought with it many positive things; however, due to the lack of environmental concern that existed until a few years ago, negative aspects were generated precisely in this area, such as environmental liabilities. These liabilities were generated because there was no legislation regulating the cessation or completion of a mining operation, so that many times at the end of the operation work was abandoned as they were, thus creating a risk to human health and safety as well as to the integrity of ecosystems. A total of 8448 environmental liabilities have now been recorded throughout the national territory, fortunately there is a concern on the part of the state to be able to address this problem, having created a methodology for classifying environmental liabilities to be able to prioritize them because of their importance; however, this methodology is based on statistics and taking into account that there are currently other classification methods, this thesis is proposed to propose a methodology based on artificial intelligence with grey systems to improve the prioritization of mining environmental liabilities in Peru. Grey Clustering's methodology is based on artificial intelligence, which is a combination of mathematics with programming for data processing, with this methodology the information obtained from the “Dirección General de Asuntos Ambientales Mineros” (DGAAM) from the Ministry of Energy and Mines, was processed obtaining an alternative classification, new scores for liabilities in addition to new ranges to classify them according to the level of risk. It was concluded that with the new classification, liabilities belonging to the very high-risk level decrease by 97% when using the Grey Clustering methodology and the percentage rating, while those that are liabilities belonging to the high-risk level increase by 42% with the new classification. It should be noted that the methodology and classification raised in this work is still in analysis, so the results presented in this thesis are preliminary and these can still be improved.es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12404/17044
dc.language.isospaes_ES
dc.publisherPontificia Universidad Católica del Perúes_ES
dc.publisher.countryPEes_ES
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.subjectIndustria minera--Aspectos ambientales--Perúes_ES
dc.subjectResponsabilidad por daños al medio ambiente--Perúes_ES
dc.subjectInteligencia artificial--Aspectos ambientales--Perúes_ES
dc.subject.ocdehttp://purl.org/pe-repo/ocde/ford#2.07.05es_ES
dc.titlePropuesta de mejora de la priorización de pasivos ambientales mineros en el Perú mediante una metodología basada en inteligencia artificial con Grey Systemses_ES
dc.typeinfo:eu-repo/semantics/bachelorThesises_ES
renati.advisor.dni42797374
renati.advisor.orcidhttps://orcid.org/0000-0003-0470-8535es_ES
renati.discipline724026es_ES
renati.levelhttps://purl.org/pe-repo/renati/level#bachilleres_ES
renati.typehttps://purl.org/pe-repo/renati/type#trabajoDeInvestigaciones_ES
thesis.degree.disciplineCiencias con mención en Ingeniería de Minases_ES
thesis.degree.grantorPontificia Universidad Católica del Perú. Facultad de Ciencias e Ingenieríaes_ES
thesis.degree.levelBachilleratoes_ES
thesis.degree.nameBachiller en Ciencias con mención en Ingeniería de Minases_ES

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
BERROSPI_JORGE_BRYAN_ PROPUESTA_MEJORA_PRIORIZACIÓN.pdf
Size:
3.5 MB
Format:
Adobe Portable Document Format
Description:
Texto restringido

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: