Distributed Hyperspectral Image Analysis based on Cloud Computing Architectures

dc.contributor.advisorBeltrán Castañón, César Armando
dc.contributor.authorAyma Quirita, Victor Andres
dc.date.accessioned2022-10-11T16:23:08Z
dc.date.available2022-10-11T16:23:08Z
dc.date.created2022
dc.date.issued2022-10-11
dc.description.abstractIn this thesis, we introduce a novel distributed version of the N-FINDR endmember extraction algorithm, which is able to exploit computer cluster resources in order to efficiently process large volumes of hyperspectral remote sensing data. The implementation of the distributed algorithm was done by extending the InterCloud Data Mining Package capabilities, originally adopted for land cover classification, through the HyperCloud-RS framework, here adapted for performing endmember extraction processes, which can be likewise executed on cloud computing environments, allowing users to elastically access and exploit processing power and storage space within cloud computing architectures, for adequately processing large volumes of hyperspectral data. The framework supports distributed execution, network communication, and fault tolerance, transparently and efficiently to the user. The experimental analysis addresses the performance issues, assessing both accuracy and execution time, over the processing of different synthetic versions of the AVIRIS Cuprite hyperspectral dataset, with 3.1 Gb, 6.2 Gb, and 15.1Gb respectively, thus addressing the issue of dealing with large-scale hyperspectral data. As a further contribution of this work, we describe in detail how to extend the HyperCloud-RS framework by integrating new endmember extraction algorithms within the proposed architecture, thus enabling researchers to implement their own distributed endmember extraction approaches specifically designed for processing large volumes of hyperspectral data.es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12404/23519
dc.language.isoenges_ES
dc.publisherPontificia Universidad Católica del Perúes_ES
dc.publisher.countryPEes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-sa/2.5/pe/*
dc.subjectComputación en la nubees_ES
dc.subjectPercepción remotaes_ES
dc.subjectImágenes hiperespectraleses_ES
dc.subjectProcesamiento de imágenes--Algoritmoses_ES
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.00.00es_ES
dc.titleDistributed Hyperspectral Image Analysis based on Cloud Computing Architectureses_ES
dc.typeinfo:eu-repo/semantics/doctoralThesises_ES
renati.advisor.dni29561260
renati.advisor.orcidhttps://orcid.org/0000-0002-0173-4140es_ES
renati.author.dni43449307
renati.discipline732028es_ES
renati.jurorPlaza Miguel, Antonioes_ES
renati.jurorBeltran Castañon, Cesar Armandoes_ES
renati.jurorMartin Hernandez, Gabrieles_ES
renati.jurorBorges Oliveira, Dario Augustoes_ES
renati.jurorMilla Bravo, Marco Antonioes_ES
renati.levelhttps://purl.org/pe-repo/renati/level#doctores_ES
renati.typehttps://purl.org/pe-repo/renati/type#tesises_ES
thesis.degree.disciplineIngenieríaes_ES
thesis.degree.grantorPontificia Universidad Católica del Perú. Escuela de Posgradoes_ES
thesis.degree.levelDoctoradoes_ES
thesis.degree.nameDoctor en Ingenieríaes_ES

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
AYMA_QUIRITA_VICTOR_ANDRES_DISTRIBUTED_HYPERSPECTRAL_IMAGE.pdf
Size:
1.45 MB
Format:
Adobe Portable Document Format
Description:
Texto completo

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: