Exploratory analysis of mass spectrometry data based on graph embeddings
Fecha
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú
Acceso al texto completo solo para la Comunidad PUCP
Resumen
El análisis metabolómico basado en la espectrometría de masas (EM) es una herramienta
poderosa, pero conlleva sus propios retos. El flujo de trabajo de la EM implica múltiples
pasos antes de su interpretación, el cual típicamente se denomina minería de datos. La
extracción de datos consiste en un proceso de dos pasos. Primero, los datos de la EM
se ordenan, organizan y presentan para su filtrado antes de ser analizados. Segundo, los
datos filtrados y reducidos se analizan utilizando técnicas estadísticas para eliminar más
variabilidad. Esto es especialmente cierto en el caso de los estudios metabolómicos no
dirigidos (untargeted) basados en EM, que se centran en comprender los cambios en las redes
metabólicas. Dado que la tarea de filtrar e identificar cambios a partir de un gran conjunto de
datos es un reto, se necesitan técnicas automatizadas para la minería de datos metabolómicos
no dirigidos basados en MS. El enfoque tradicional basado en estadísticas tiende a filtrar
en exceso los datos en bruto, lo que puede dar lugar a la eliminación de datos relevantes y
conducir a la identificación de menos cambios metabolómicos. Esta limitación del enfoque
tradicional subraya la necesidad de un nuevo método. En este trabajo, presentamos un nuevo
enfoque de aprendizaje profundo que utiliza node embeddings (impulsado por Graph Neural
Networks), edge embeddings y un algoritmo de detección de anomalías para analizar los datos
generados por la metabolómica basada en EM llamado GEMNA (Graph Embedding-based
Metabolomics Network Analysis), Por ejemplo, para un estudio de volatilidad no dirigida en
caramelos Mentos, los grupos de datos producidos por GEMNA fueron mejores que los de las
técnicas tradicionales, es decir, GEMNA consigue una silhouette score = 0.409, vs el enfoque
tradicional que consigue una silhouette score = −0.004.
Mass spectrometry (MS)-based metabolomics analysis is a powerful tool, but it comes with its own set of challenges. The MS workflow involves multiple steps before its interpretation in what is denominate data mining. Data mining consists of a two-step process. First, the MS data is ordered, arranged, and presented for filtering before being analyzed. Second, the filtered and reduced data are analyzed using statistics to remove further variability. This holds true particularly for MS-based untargeted metabolomics studies, which focused on understanding fold changes in metabolic networks. Since the task of filtering and identifying changes from a large dataset is challenging, automated techniques for mining untargeted MS-based metabolomic data are needed. The traditional statistics-based approach tends to overfilter raw data, which may result in the removal of relevant data and lead to the identification of fewer metabolomic changes. This limitation of the traditional approach underscores the need for a new method. In this work, we present a novel deep learning approach using node embeddings (powered by Graph Neural Networks), edge embeddings, and anomaly detection algorithm to analyze the data generated by MS-based metabolomics called GEMNA (Graph Embedding-based Metabolomics Network Analysis), for example for an untargeted volatile study on Mentos candy, the data clusters produced by GEMNA were better than the ones used traditional tools, i.e., GEMNA has silhouette score = 0.409, vs the traditional approach has silhouette score = −0.004.
Mass spectrometry (MS)-based metabolomics analysis is a powerful tool, but it comes with its own set of challenges. The MS workflow involves multiple steps before its interpretation in what is denominate data mining. Data mining consists of a two-step process. First, the MS data is ordered, arranged, and presented for filtering before being analyzed. Second, the filtered and reduced data are analyzed using statistics to remove further variability. This holds true particularly for MS-based untargeted metabolomics studies, which focused on understanding fold changes in metabolic networks. Since the task of filtering and identifying changes from a large dataset is challenging, automated techniques for mining untargeted MS-based metabolomic data are needed. The traditional statistics-based approach tends to overfilter raw data, which may result in the removal of relevant data and lead to the identification of fewer metabolomic changes. This limitation of the traditional approach underscores the need for a new method. In this work, we present a novel deep learning approach using node embeddings (powered by Graph Neural Networks), edge embeddings, and anomaly detection algorithm to analyze the data generated by MS-based metabolomics called GEMNA (Graph Embedding-based Metabolomics Network Analysis), for example for an untargeted volatile study on Mentos candy, the data clusters produced by GEMNA were better than the ones used traditional tools, i.e., GEMNA has silhouette score = 0.409, vs the traditional approach has silhouette score = −0.004.
Descripción
Palabras clave
Espectometría de masas, Redes neuronales (Computación), Teoría de grafos, Aprendizaje profundo (Aprendizaje automático)
Citación
Colecciones
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto donde se indique lo contrario, la licencia de este ítem se describe como info:eu-repo/semantics/openAccess
