Evaluación de las características dinámicas en distintos suelos peruanos para la estimación de los espectros de diseño sísmico
No Thumbnail Available
Date
2025-04-01
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Pontificia Universidad Católica del Perú
Acceso al texto completo solo para la Comunidad PUCP
Abstract
El Perú se encuentra en una zona de alta actividad sísmica debido a la interacción entre
la Placa de Nazca y la Placa Sudamericana, así como a la presencia de fallas geológicas
superficiales. Estos eventos sísmicos han causado considerables pérdidas humanas y
materiales en todo el país. Algunos de los terremotos más importantes que han ocurrido
en el Perú fueron el de Lima en 1966, con una magnitud 7.6 Ms, el terremoto de Chimbote
en 1970 que alcanzó una magnitud de 7.9 Mw, el terremoto de Lima en 1974 con una
magnitud de 7.6 Ms , el terremoto de Arequipa en 2001, que registró una magnitud de 8.4
Mw, el de Pisco en 2007, con una magnitud de 7.9 Mw entre otros eventos. Durante estos
sismos, el Perú carecía de suficiente instrumentación para registrar adecuadamente estos
eventos sísmicos.
Por otro lado, la determinación del espectro de diseño sísmico es importante para el diseño
de proyectos de infraestructura, sin embargo, no siempre se dispone de suficiente
información sobre los parámetros que afectan la respuesta dinámica del suelo como la
velocidad de ondas de corte, el período del suelo, el módulo de corte y el
amortiguamiento. Actualmente, en nuestro país, no se han realizado investigaciones
exhaustivas sobre este tema, lo cual implica la necesidad de definir el tipo de espectro de
diseño recomendado en función de la importancia de la estructura y el comportamiento
dinámico del suelo.
En el marco de esta investigación, se realizó la caracterización del sitio mediante ensayos
in situ y ensayos en laboratorio. Estas pruebas permitieron obtener los perfiles de
velocidad de las ondas de corte (Vs), los perfiles de velocidad de las ondas de compresión
(Vp), los periodos predominantes del suelo (T) y el módulo de corte y el amortiguamiento
para pequeñas deformaciones. Además, se realizó la comparación de las Relaciones
Espectrales H/V obtenidas del registro de microtremores y de acelerógrafos con las H/V
de ondas Rayleigh.
Posteriormente, con la información obtenida de los ensayos de campo y laboratorio, se
realizó una estimación de los parámetros dinámicos. Además, se estimaron perfiles de
velocidad de ondas de corte a grandes profundidades utilizando la teoría de correlación
autoespacial (SPAC).
Con esta información se elaboraron modelos estratigráficos del subsuelo que incluyen los
espesores de los estratos y la profundidad del basamentoMediante el análisis de respuesta
de sitio, se determinaron los espectros de diseño sísmico, teniendo en cuenta diferentes
características del comportamiento dinámico del suelo para tres zonas sísmicas y tres
tipos de suelos, (Z2-S2, Z2-S3, Z3-S3, Z4-S1, Z4-S2. Z4-S1) de acuerdo con la norma E-
030.
Los resultados obtenidos ofrecen mejoras significativas en los valores de TP, TL ,
períodos predominantes y coeficientes de amplificación de los espectros de diseño
sísmico normativos, utilizados en edificaciones peruanas. Adicionalmente la
implementación de las técnicas utilizadas para estimación de las propiedades dinámicas
del suelo generará nuevos conocimientos y experiencias sobre las propiedades dinámicas
de los suelos así como proponer recomendaciones para las Normas E-030 y E-050.
Peru is located in a highly seismic zone due to the interaction between the Nazca Plate and the South American Plate, as well as the presence of surface geological faults. These seismic events have caused significant human and material losses throughout the country. Some of the most important earthquakes that have occurred in Peru include the 1966 Lima earthquake with a magnitude of 7.6 Ms, the 1970 Chimbote earthquake with a magnitude of 7.9 Mw, the 1974 Lima earthquake with a magnitude of 7.6 Ms, the 2001 Arequipa earthquake with a magnitude of 8.4 Mw, and the 2007 Pisco earthquake with a magnitude of 7.9 Mw, among other events. During these earthquakes, Peru lacked sufficient instrumentation to adequately measure these seismic events. On the other hand, determining the seismic design spectrum is crucial for the design of infrastructure projects; however, there isn't always enough information available about the parameters that affect the dynamic response of the soil, such as shear wave velocity, soil period, shear modulus, and damping. Currently, in our country, comprehensive research on this topic has not been conducted, which implies the need to define the recommended design spectrum type based on the structure's importance and the dynamic behavior of the soil. Within the scope of this research, site characterization was carried out through in-situ tests and laboratory tests. These tests allowed us to obtain profiles of shear wave velocities (Vs), profiles of compression wave velocities (Vp), predominant soil periods (T), and shear modulus and damping for small deformations. Furthermore, a comparison was made between the H/V spectral ratios obtained from microtremor measurements and accelerometer records with the H/V ratios of Rayleigh waves. Subsequently, with the information obtained from field and laboratory tests, an estimation of dynamic parameters was conducted. Additionally, shear wave velocity profiles at great depths were estimated using the Spatial Auto-Correlation (SPAC) theory. With this information, stratigraphic subsurface models were developed, including layer thicknesses and basement depth. Using the site response analysis, seismic design spectra were determined, taking into account different characteristics of the dynamic behavior of the soil for three seismic zones and three soil types (Z2-S2, Z2-S3, Z3-S3, Z4-S1, Z4-S2, Z4-S1) in accordance with the E-030 standard. The obtained results provide significant improvements in the values of TP, TL, predominant periods, and amplification coefficients of regulatory seismic design spectra used in Peruvian buildings. Additionally, the implementation of the techniques used for estimating soil dynamic properties will generate new knowledge and experiences about soil dynamic properties and propose recommendations for the E-030 and E-050 standards.
Peru is located in a highly seismic zone due to the interaction between the Nazca Plate and the South American Plate, as well as the presence of surface geological faults. These seismic events have caused significant human and material losses throughout the country. Some of the most important earthquakes that have occurred in Peru include the 1966 Lima earthquake with a magnitude of 7.6 Ms, the 1970 Chimbote earthquake with a magnitude of 7.9 Mw, the 1974 Lima earthquake with a magnitude of 7.6 Ms, the 2001 Arequipa earthquake with a magnitude of 8.4 Mw, and the 2007 Pisco earthquake with a magnitude of 7.9 Mw, among other events. During these earthquakes, Peru lacked sufficient instrumentation to adequately measure these seismic events. On the other hand, determining the seismic design spectrum is crucial for the design of infrastructure projects; however, there isn't always enough information available about the parameters that affect the dynamic response of the soil, such as shear wave velocity, soil period, shear modulus, and damping. Currently, in our country, comprehensive research on this topic has not been conducted, which implies the need to define the recommended design spectrum type based on the structure's importance and the dynamic behavior of the soil. Within the scope of this research, site characterization was carried out through in-situ tests and laboratory tests. These tests allowed us to obtain profiles of shear wave velocities (Vs), profiles of compression wave velocities (Vp), predominant soil periods (T), and shear modulus and damping for small deformations. Furthermore, a comparison was made between the H/V spectral ratios obtained from microtremor measurements and accelerometer records with the H/V ratios of Rayleigh waves. Subsequently, with the information obtained from field and laboratory tests, an estimation of dynamic parameters was conducted. Additionally, shear wave velocity profiles at great depths were estimated using the Spatial Auto-Correlation (SPAC) theory. With this information, stratigraphic subsurface models were developed, including layer thicknesses and basement depth. Using the site response analysis, seismic design spectra were determined, taking into account different characteristics of the dynamic behavior of the soil for three seismic zones and three soil types (Z2-S2, Z2-S3, Z3-S3, Z4-S1, Z4-S2, Z4-S1) in accordance with the E-030 standard. The obtained results provide significant improvements in the values of TP, TL, predominant periods, and amplification coefficients of regulatory seismic design spectra used in Peruvian buildings. Additionally, the implementation of the techniques used for estimating soil dynamic properties will generate new knowledge and experiences about soil dynamic properties and propose recommendations for the E-030 and E-050 standards.
Description
Keywords
Dinámica de suelos--Perú, Construcciones antisísmicas--Perú, Análisis de la peligrosidad sísmica--Perú
Citation
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as info:eu-repo/semantics/embargoedAccess