2. Maestría

Permanent URI for this communityhttp://98.81.228.127/handle/20.500.12404/2

Tesis de la Escuela de Posgrado

Browse

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    Item
    Constraints between concurrence and polarization for mixed states subjected to open system dynamics
    (Pontificia Universidad Católica del Perú, 2023-05-24) Montenegro La Torre, Carlos Renzo Misael; De Zela Martinez, Francisco Antonio
    Entanglement and polarization are mutually constrained by the relationship C2 + P2 = 1, which engages concurrence (C) of a pure, two-qubit state and the degree of polarization (P) of either of its two subsystems. How the above constraint generalizes for mixed states, is an open question. We address mixed, two-qubit states of the X type, i.e., those whose density matrix has nonzero elements only in the two main diagonals. We focus on mixed states that arise out of a pure, two-qubit state that is subjected to either the amplitude damping channel or the depolarizing channel. We derive alternative constraints for concurrence and polarization and test them experimentally with polarization-entangled photons. We argue that our theoretical results hold also for classical light, whenever two binary degrees of freedom can be entangled.
  • Thumbnail Image
    Item
    Aspectos geométricos de la teoría de curvas algebraicas
    (Pontificia Universidad Católica del Perú, 2018-10-04) Egúsquiza Gallo, Mery Enny; Rosas Bazán, Rudy José
    En el presente trabajo se introduce el concepto de curva algebraica afín y se presenta el proceso de compactificación como curvas algebraicas proyectivas. El objetivo de la tesis es presentar una demostración geométrica de la fórmula “grado género” de una curva lisa. Este teorema relaciona el género topológico de una curva con su grado algebraico.
  • Thumbnail Image
    Item
    Distribución uniforme sobre la Intersección de un simplex y una esfera en dimensiones altas
    (Pontificia Universidad Católica del Perú, 2017-10-18) Cabanillas Banda, Wilson Alberto; Beltrán Ramírez, Johel Victorino
    La presente tesis es acerca de deducir propiedades asintóticas acerca de la distribución uniforme sobre la intersección de una esfera y un simplex en Rn cuando la dimensión del espacio euclideano tiende a infinito. Claramente, para que tal intersección sea no vacía es necesario que los tamaños de la esfera y el simplex, que también haremos crecer al infinito, sean configurados de modo adecuado (esto es discutido con detalle en el Lema 2.1). El resultado importante de este trabajo es que, de acuerdo a la \razón asintótica" entre los tamaños de la esfera y el simplex, la distribución uniforme sobre la intersección de ellos se comportaría de modos absolutamente distintos. Para dar una idea aproximada del resultado que conseguiremos podemos explicarlo del siguiente modo: Si n es muy grande y (X1; : : : ;Xn) es un punto elegido uniformemente sobre la intersección de una esfera (euclideana) de radio (raíz de nb) y un simplex de radio n (respecto a la norma de la suma) en Rn entonces (i) Para 1 < b < 2 el tamaño de cada componente jXj j es de orden menor o igual a (raíz de log(n) (en particular, no existe una componente notablemente mayor que las demás). (ii) Para b > 2, existe una componente del vector cuyo tamaño es de orden raíz de n) mientras que el tamaño del resto de componentes es de orden estrictamente menor. Los enunciados precisos de estas afirmaciones son los Teoremas 2.3 y 2.4 de la Sección 2.2. Estos teoremas incluyen también el resultado de lo que sucede en el valor crítico b = 2.
  • Thumbnail Image
    Item
    Estructuras métricas de contacto y polinomios de Brieskorn-Pham
    (Pontificia Universidad Católica del Perú, 2016-11-15) Ballón Bordo, Álvaro José; Cuadros Valle, Jaime
    Esta tesis presenta una visión global y prácticamente autocontenida de los avances que se llevaron a cabo en la décadas de los años 1960 y 1970 con respecto al estudio de las estructuras de contacto en variedades diferenciables. Nuestro objetivo principal sería exhibir explícitamente estructuras métricas de contacto en las denominadas variedades de Brieskorn, que surgen como el conjunto de ceros de los llamados polinomios de Brieskorn-Pham intersecado con la esfera unitaria. Para ello comenzaremos desarrollando a grandes rasgos los conceptos relacionados a la geometría simpléctica, la geometría compleja y las variedades de Kähler. Luego realizaremos un esbozo de prueba del teorema de Boothby-Wang, que constituye una generalización de la fibración de Hopf. A continuación presentaremos la construcción de estructuras métricas de contacto, en particular, las denominadas estructuras de Sasaki. El objetivo de ello es obtener estructuras de Sasaki en las variedades de Brieskorn, las cuales exhibiremos en coordenadas a fin de obtener un procedimiento para construirlas en una variedad de Brieskorn arbitraria. Por último, relacionaremos lo estudiado con la fibración de Boothby-Wang para probar que las estructuras construidas pueden ser proyectadas como hipersuperficies en el espacio proyectivo complejo. Debido a la naturaleza de las nociones presentadas, se espera que el lector tenga un conocimiento elemental de la geometría riemanniana.
  • Thumbnail Image
    Item
    Topological phases generated with single photons entangled in polarization and momentum
    (Pontificia Universidad Católica del Perú, 2016-11-08) Suarez Yana, Elmer Eduardo; Zela Martínez, Francisco Antonio de
    El entrelazamiento puede abordarse desde dos perspectivas diferentes: como un recurso esencial para las tecnologías cuánticas y como un fenómeno fundamental que está íntimamente relacionado con nuestra comprensión de la naturaleza misma. Por otro lado, la teoría cuántica se formula en el marco teórico de los espacios de Hilbert, para los que el entrelazamiento juega un papel importante en la determinación de su geometría y topología. Las características topológicas que puedan exhibirse al utilizar estados entrelazados son largamente independientes de la realización física particular del entrelazamiento: puede afectar a un solo grado de libertad poseído por dos partículas diferentes, o bien puede implicar dos grados diferentes de libertad que se cohesionan a una misma partícula o entidad física, por ejemplo, un campo electromagnético. Resulta que la manipulación de los grados de libertad de polarización y momentum (camino) ya sea de forma independiente el uno del otro o mediante la aplicación de evoluciones unitarias no separables es muy versátil. Con esto en mente, la presente tesis apunta hacia el diseño e implementación de arreglos experimentales que se pueden utilizar para estudiar fases geométricas y topológicas en sistemas de dos qubits mediante el uso de los grados de libertad de momentum (camino) y polarización de un solo fotón. Finalmente mostramos el diseño de un experimento, apuntado a exhibir la fase topológica, y los resultados obtenidos.
  • Thumbnail Image
    Item
    Ergodicidad, rigidez y topología de subgrupos de Bih0(C)
    (Pontificia Universidad Católica del Perú, 2012-05-21) Ysique Quesquén, José Walter; Fernández Pilco, Percy
    La presente tesis basa su contenido en temas de dinámica compleja, tiene como primer objetivo el estudio de los teoremas de densidad, ergodicidad y rigidez de Y. Iliashenko [I2; I3]; y como segundo objetivo se estudia un teorema debido a C. Camacho [Ca1], el cual analiza el comportamiento topológico de un germen del tipo parabólico. Para lograr los objetivos planteados introducimos las definiciones y resultados necesarios, los cuales buscamos expresarlos de tal modo que sean accesibles al lector y poder así de alguna manera que lo tratado en esta tesis se constituya en material de consulta y aplicación en otras áreas de la matemática.