2. Maestría
Permanent URI for this communityhttp://98.81.228.127/handle/20.500.12404/2
Tesis de la Escuela de Posgrado
Browse
4 results
Search Results
Item Modelos de regulación monopólica bajo información asimétrica(Pontificia Universidad Católica del Perú, 2022-03-02) Inga Martel, Andy Marcial; Calagua Mendoza, José BraulioEn un modelo tradicional, la política de regulación de un monopolio recomienda que el precio se sitúe al nivel del costo marginal y que el tamaño del subsidio permita a la firma cubrir sus costos fijos. Sin embargo, estos resultados se basan en un supuesto irreal, en el cual todos los agentes tienen información perfecta para tomar sus decisiones de manera óptima. Dado este panorama, el objetivo de este trabajo es presentar los principales modelos de regulación en un contexto de información asimétrica, en el cual el regulador tiene información imperfecta acerca de algunas características de la firma (costos, calidad del bien/servicio, entre otros) o del mercado (demanda). En particular, se presenta dos grupos de modelos: (i) los modelos unidimensionales, caracterizados porque la asimetría de información ocurre solo en un parámetro (costos); y (ii) los modelos bidimensionales, en donde la asimetría de información se da en dos parámetros conjuntamente (costos y demanda). Para estos modelos, la política regulatoria di ere del caso tradicional, ya que el precio regulado, en general, supera al costo marginal y el subsidio entregado a la firma no necesariamente cubre la totalidad de sus costos. Estos resultados se producen en un contexto en el cual el regulador busca reducir la ventaja informacional de la firma. Adicionalmente este trabajo encontró resultados distintos al ejemplo planteado en el documento original de Lewis and Sappington (1988b). Este hallazgo constituye la principal contribución realizada en este documento.Item El modelo de precios de commodity de Schwartz-Smith y filtros de Kalman con paneles de datos de futuros(Pontificia Universidad Católica del Perú, 2019-05-02) Ocola Agüero, Kendy Brigitte; Beltrán Ramírez, Johel VictorinoEste trabajo estudia el modelo estocástico de precios spot de commodity de Schwartz y Smith (2000). Este modelo asume que el precio spot de un commodity St es una función de dos factores estocásticos, ln (St) = t + t, con una dinámica Xt = ( t, t) descrita por el sistema de ecuaciones diferenciales estocásticas de difusión d t = − tdt + dB t d t = μ dt + dB t , donde el vector B t ,B t es un P−proceso Browniano correlacionado con coeficiente . Dado el modelo de precios spot y un conjunto de precios futuros de cierto commodity Yt, el problema general consiste en calibrar Xt y el conjunto de parámetros = { , μ , , , }, considerando de que Xt solo es observable indirectamente a través de Yt. Para el abordaje de este problema se recurre al método de filtraje estocástico a partir de data observable. El objetivo del filtraje estocástico es calcular la distribución condicional E [Xt | y1, ..., yt] dada una muestra finita (y1, ..., yt) de observaciones discretas de Yt. La solución al problema de filtraje no es directo y se basa en tres etapas. Primero, se encuentra la solución de Xt. Segundo, se realiza el cambio de medida de probabilidad P de nuestro modelo spot por una medida equivalente Q llamado medida de riesgo neutral, aplicando el Teorema de Girsanov con precios de mercado de riesgo ( , ). Con el cambio de medida se obtiene la curva de precios futuros para un T fijo ,aplicando la definición de precios futuros, F (t, T) = EQ (ST /Ft) : Yt log (Ft,T ) = e− (T−t) t + t + A(t, T) , donde A(t, T) es una función determinística. Luego de determinar la ecuación de futuros del modelo de Schwartz y Smith (2000), en la tercera etapa para n fijo y un panel de datos de futuros {Ft,T1 , ..., Ft,Tn} , se representa el modelo en la forma espacio estado discreto para aplicar el método de Filtro de Kalman en la estimación recursiva del sistema lineal discreto. Con las ecuaciones de filtraje se usa el método de máxima verosimilitud para estimar el conjunto de paramétros .Item Análisis de la monotonicidad de la demanda vía relaciones de preferencia y funciones de utilidad(Pontificia Universidad Católica del Perú, 2019-02-04) Yarasca Moscol, Julio Eduardo; Jordán Liza, AbelardoLa teoría económica es un ambiente donde las matemáticas brindan muchos aportes para modelizar comportamientos de agentes económicos. En este contexto, la presente tesis enfatiza el despliegue matemático para tratar el problema del consumidor en una economía descrita por bienes de consumo. Estos conforman canastas de consumo que son identi ficados con elementos de un cono convexo de un espacio vectorial apropiado como es el caso estándar de Rn, y por un sistema de precios, los cuales son identi ficados con vectores del cono dual topológico asociado al cono de las canastas de consumo. El problema del consumidor, es un modelo en el que un consumidor elige canastas de bienes (los cuales son accesibles para él considerando su restricción presupuestaria) de tal forma que maximice su satisfacción por el consumo de estas. El problema del consumidor se puede formular desde dos perspectivas distintas, ya sea mediante preferencias o mediante funciones de utilidad que representan la satisfacción del agente. En ambas formulaciones la solución al problema del consumidor es un conjunto de canastas de bienes dando lugar a una aplicación que asigna a cada vector de precios un conjunto de canastas (puede ser vacío, unitario o de varios elementos), a esta aplicación se le denomina correspondencia de demanda. En el presente trabajo se realiza una exposición pormenorizada de la monotonicidad de la correspondencia de demanda, vía preferencias y vía funciones de utilidad, tomando en cuenta condiciones de diferenciabilidad así como de no diferenciabilidad en lo que concierne a las funciones de utilidad. En algunos casos se debilita la clásica condición de concavidad para la función de utilidad. Asimismo, se evidencia el papel que juega la función de utilidad indirecta en el tratamiento de la monotonicidad de la función de demanda.Item Representación de preferencias por funciones de utilidad contínuas(Pontificia Universidad Católica del Perú, 2015-07-07) Zapata Revoredo, Lily Fanny; Lugón Ceruti, AlejandroLa presente investigación desarrolla en detalle el artículo Continuity properties of Paretian Utility. International Economic Review, 5, 1964 de Gerard Debreu. Cuyo principal resultado es representar preferencias mediante una función de utilidad continua u= g o v. Esta investigación tiene como principal aporte presentar un ejemplo ilustrativo de una cierta función v , que es el paso necesario, pero no suficiente para lograr dicha representación numérica de preferencias. Cabe señalar que este ejemplo no se encuentra dado en el artículo ni en ningún otro documento relacionado con el tema. La teoría económica concerniente al tema será representada matemáticamente; esto nos facilitara el uso de herramientas y resultados de Análisis y Topología para poder lograr la representación mediante una función de utilidad continua. Así, las preferencias se representan mediante una relación binaria la cual será reflexiva y transitiva y para el conjunto de alternativas será dotado de una estructura topológica. Surge, entonces las interrogantes ¿Es esto suficiente para representar numéricamente las preferencias? ¿Bajo qué condiciones podemos tener esta representación? ¿Es siempre posible representar una preferencia? ¿Bajo qué condiciones podemos tener esta representación? A ello se responde con el clásico ejemplo de las Preferencias Lexicográficas, las cual es una relación binaria reflexiva y transitiva pero no admiten representación. En seguida, se presenta la definición de cierta función creciente v, la cual logra representar preferencias pero que no siempre es continua. Aquí presentamos ejemplos ilustrativos para los cuales se ve cuando esta función es continua o no. Debido a que pueden darse estas posibilidades es que es necesario definir una función g para la cual a partir de definiciones, lemas y proposiciones se verifica que los saltos de g(S) son abiertos. Con estas funciones v y g es posible definir la función u: g o v la cual es continua, logrando así la representación buscada.