2. Maestría

Permanent URI for this communityhttp://98.81.228.127/handle/20.500.12404/2

Tesis de la Escuela de Posgrado

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Modelo de regresión lineal usando una mixtura de distribuciones senh-normal
    (Pontificia Universidad Católica del Perú, 2023-09-27) Palomino Ore, Roussel Simpson; Benites Sánchez, Luis Enrique
    La distribución Senohiperbólico-Normal, denominada también como una variación de la distribución Birnbaum-Saunders, surgió inicialmente para estimar el deterioro en la calidad de los materiales sujetos a estrés. Asimismo, los modelos de mixtura han suscitado considerable interés en el campo de estadística debido a que permiten lidiar con situaciones en las que el comportamiento de los errores de un modelo con ajuste lineal se aleja significativamente de la normalidad. Esta tesis aborda los dos temas mencionados mediante la presentación de un modelo de ajuste lineal usando una mixtura de distribuciones Senohiperbólico Normal o Log-Birnbaum-Saunders. Esta propuesta es una familia versátil de distribuciones de probabilidad que posibilita representar datos que presentan multimodalidad además de provenir de poblaciones heterogéneas. Para conseguir los estimadores de máxima verosimilitud se emplea el algoritmo EM con maximización condicional. Asimismo, se llevan a cabo estudios de simulación y análisis de conjuntos de datos reales para demostrar la utilidad del método propuesto. Por último, se implementa la propuesta del algoritmo y los métodos en el software R.
  • Thumbnail Image
    Item
    Clusterización basada en una mixtura con distribuciones normales contaminadas multivariadas con datos incompletos: Una aplicación a la evaluación de habilidades socioemocionales
    (Pontificia Universidad Católica del Perú, 2023-08-31) Zegarra López, Ángel Christopher; Benites Sánchez, Luis Enrique
    Aunque la distribución normal es útil en una variedad de contextos, enfrenta ciertas limitaciones al modelar datos que contienen valores extremos. Estos valores pueden generar “colas” más pesadas en la distribución, en contraste con las colas más ligeras de la distribución normal. Por lo tanto, en tales circunstancias, la distribución normal contaminada se presenta como una alternativa efectiva. Este ajuste es especialmente significativo en aplicaciones como la agrupación basada en modelos. En este método, es habitual emplear distribuciones normales multivariadas como fundamento para la agrupación. No obstante, la estimación de parámetros puede verse afectada por la presencia de valores extremos. En este estudio, implementamos la distribución normal contaminada multivariada como base para la agrupación basada en modelos, tal como propone Tong y Tortora (2022). Explicamos las características del modelo y llevamos a cabo un estudio de simulación para contrastar su desempeño con la distribución normal multivariada y la distribución t multivariada. Finalmente, aplicamos un proceso de agrupación basado en una mezcla de distribuciones normales contaminadas multivariadas a un conjunto de datos reales. Estos datos se derivan de los resultados de la Evaluación de Habilidades Socioemocionales, una iniciativa implementada por el Ministerio de Educación de Perú en 2021.