2. Maestría
Permanent URI for this communityhttp://98.81.228.127/handle/20.500.12404/2
Tesis de la Escuela de Posgrado
Browse
3 results
Search Results
Item Desarrollo de un sistema de diagnóstico de fallas basado en observadores utilizando representaciones politópicas de sistemas no lineales aplicado a un proceso hidráulico de cuatro tanques acoplados(Pontificia Universidad Católica del Perú, 2017-11-04) Uscamaita Quispetupa, Rossy; Pérez Zúñiga, Carlos GustavoSe presenta el diseño de un esquema para la detección, aislamiento y estimación de fallas basados en observadores de entrada desconocida (UIO, por sus siglas en inglés) y observadores proporcionales integrales (PIO, por sus siglas en inglés). Para sistemas no lineales usando representaciones politópicas de sistemas lineales variables (LPV, por sus siglas en inglés), aplicados a un proceso hidráulico de cuatro tanques. Para la obtener la representación LPV polítopica del proceso hidráulico se considera 2 parámetros variables (válvulas de ingreso de flujo de agua a los tanques del proceso). Estos valores son conocidos ya que se contará con sensores de flujo de en la planta que se instalara en el Laboratorio de Control Avanzado del Departamento de Ingeniería de la PUCP. Al utilizar observadores para los esquemas de diagnóstico de fallas, conlleva a que se deba tener una buena convergencia de estados estimados y que el error de estimación tienda a cero, ya que caso contrario se pude dar falsas alarmas. Esto se puede lograr con los observadores: de entrada desconocida que desacopla a las incertidumbres y los observadores proporcionales integrales que estiman a la perturbación que acompaña al proceso. La estabilidad de los observadores politópicos estará garantizada por la asignación de polos establecida a través de la matriz de desigualdades lineales (LMI, por sus siglas en inglés). El aislamiento de las fallas se realizó gracias al esquema de bancos de observadores generalizado; mientras que la estimación se realizó de manera simultánea a la estimación de estados, con ayuda de los observadores aumentados. Se implementó un algoritmo de Diagnóstico de Fallas en sensores y actuadores en el software RSlogix5000, este algoritmo fue descargado en un PLC virtual. Se elaboró también una interfaz gráfica en el software Factory Talk View que permite monitorear las variables controladas y diagnosticar de forma visual.Item Modeling and track planning for the automation of BMW model car(Pontificia Universidad Católica del Perú, 2017-06-28) Tabuchi Fukuhara, Rubén Toshiharu; Lin, Shih-Jan; Tafur, JulioIn recent years, autonomous driving technologies have become a topic of growing interest due to the promise of safer and more convenient mode of transportation. An essential element in every autonomous driving system is the control algorithm. Classical control schemes, like PID, are not able to manage Multiple Inputs-Multiple Outputs, complex, non-linear systems. A more recent control strategy is Model predictive control (MPC), a modern control method that has shown promising results in systems with complex dynamics. In MPC, a sequence of optimal control inputs are predicted within a short time horizon based on the car dynamics, and soft or hard restriction of the system. In this work, three different nonlinear-MPC (NMPC) controllers were formulated based on a kinematic, and two dynamic models (double-track and single-track). The steering system’s dynamics were additionally identified using experimental data. Each MPC was solved applying direct methods, by transforming the optimal control problem to a Nonlinear programming (NLP) problem using the Multiple shooting scheme with a Runge-Kutta 4 integrator. The NLPs were solved using the state-of-the-art optimization solver IpOpt. Before the real-time implementation, all the NMPC controllers were simulated in different scenarios and multiple configurations. The results allowed to select the most suitable controllers to be implemented in a 1:5 scale robotic car. Finally, two NMPC controllers based on the kinematic, and the single-track dynamic model were implemented in the robotic car. The algorithms were tested in two different scenarios at the maximum possible speed. The obtained results from the tests were very promising, and provide compelling evidence that MPC could be implemented as the core of future autonomous driving algorithms, since it computes the optimal control inputs, taking in consideration the restrictions inherent to the system.Item Observability studies of a turbocharger systems(Pontificia Universidad Católica del Perú, 2016-06-02) Tejada Zúñiga, María Cristina; Reger, Johann; Sotomayor Moriano, Juan JavierThe use of diesel engine turbochargers is increasing today, as it represents an option that o ers high e ciency and low fuel consumption. To design the control system in order to reduce the level of exhaust emissions there is a need for information about all states that are not measurable. To this end, observers or virtual sensors are more frequently applied, achieving estimates of the system states from inputs and measured output. To propose an observer, the precise mathematical model of the air path diesel engine system is used. This is a nonlinear model of a third order which is analyzed in terms of observability. From the point of view of systems theory, certain conditions and the existence of a transformation of the system state, called di eomorphism, need to be evaluated. Observers have been designed based on di erent approaches: Extended Luenberger Observers, High Gain Observers, Sliding Modes Observers and Extended Kalman-Bucy Filters. They have been validated by simulation for the system under consideration in this work.