2. Maestría

Permanent URI for this communityhttp://98.81.228.127/handle/20.500.12404/2

Tesis de la Escuela de Posgrado

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Control of autonomous multibody vehicles using artificial intelligence
    (Pontificia Universidad Católica del Perú, 2021-03-26) Roder, Benedikt; Morán Cárdenas, Antonio Manuel
    The field of autonomous driving has been evolving rapidly within the last few years and a lot of research has been dedicated towards the control of autonomous vehicles, especially car-like ones. Due to the recent successes of artificial intelligence techniques, even more complex problems can be solved, such as the control of autonomous multibody vehicles. Multibody vehicles can accomplish transportation tasks in a faster and cheaper way compared to multiple individual mobile vehicles or robots. But even for a human, driving a truck-trailer is a challenging task. This is because of the complex structure of the vehicle and the maneuvers that it has to perform, such as reverse parking to a loading dock. In addition, the detailed technical solution for an autonomous truck is challenging and even though many single-domain solutions are available, e.g. for pathplanning, no holistic framework exists. Also, from the control point of view, designing such a controller is a high complexity problem, which makes it a widely used benchmark. In this thesis, a concept for a plurality of tasks is presented. In contrast to most of the existing literature, a holistic approach is developed which combines many stand-alone systems to one entire framework. The framework consists of a plurality of modules, such as modeling, pathplanning, training for neural networks, controlling, jack-knife avoidance, direction switching, simulation, visualization and testing. There are model-based and model-free control approaches and the system comprises various pathplanning methods and target types. It also accounts for noisy sensors and the simulation of whole environments. To achieve superior performance, several modules had to be developed, redesigned and interlinked with each other. A pathplanning module with multiple available methods optimizes the desired position by also providing an efficient implementation for trajectory following. Classical approaches, such as optimal control (LQR) and model predictive control (MPC) can safely control a truck with a given model. Machine learning based approaches, such as deep reinforcement learning, are designed, implemented, trained and tested successfully. Furthermore, the switching of the driving direction is enabled by continuous analysis of a cost function to avoid collisions and improve driving behavior. This thesis introduces a working system of all integrated modules. The system proposed can complete complex scenarios, including situations with buildings and partial trajectories. In thousands of simulations, the system using the LQR controller or the reinforcement learning agent had a success rate of >95 % in steering a truck with one trailer, even with added noise. For the development of autonomous vehicles, the implementation of AI at scale is important. This is why a digital twin of the truck-trailer is used to simulate the full system at a much higher speed than one can collect data in real life.
  • Thumbnail Image
    Item
    Diseño de un controlador neuronal para la estabilidad del movimiento lateral de una aeronave
    (Pontificia Universidad Católica del Perú, 2019-09-23) Calderón Calderón, José Luis; Morán Cárdenas, Antonio Manual
    El principal objetivo del presente trabajo de tesis es diseñar un controlador inteligente, basado en redes neuronales que permita un vuelo autónomo lateralmente estable de una aeronave, para el entrenamiento de los pesos del neurocontrolador se utiliza el algoritmo Dynamic Back Propagation (DBP). El controlador de estabilidad lateral mantiene estable la velocidad de guiñada r y ángulo de resbalamiento β de una aeronave. La velocidad de guiñada está relacionada con mantener el balance de la aeronave en la posición de alas niveladas y el ángulo de resbalamiento tiene que ver con disminuir la presencia de velocidades laterales sobre la aeronave. Para el diseño del neurocontrolador primero se desarrolla un modelo dinámico de la aeronave con seis grados de libertad, basado en leyes físicas, la dinámica del cuerpo rígido y la aerodinámica; como segundo paso, se aproxima la aeronave a un modelo matemático linealizado del movimiento lateral y se utiliza en el desarrollo de las funciones para la actualización de pesos utilizando el algoritmo Dynamic Back Propagation; luego se realiza el entrenamiento de dos neurocontroladores considerando el modelo de la aeronave de seis grados de libertad, el primer neurocontrolador manipula el timón y el segundo los alerones; finalmente se prueba el desempeño de los neurocontroladores para diferentes condiciones de vuelo, incluido perturbaciones debidas al viento, variaciones de la masa de la aeronave, variación de la densidad del aire y variación de parámetros en el modelo de seis grados de libertad. Los resultados de las simulaciones muestran que los neurocontroladores logran estabilidad asintótica aceptable para la velocidad de guiñada r y el ángulo de resbalamiento β para varias condiciones de vuelo y perturbaciones externas, además operan adecuadamente a pesar de errores en el modelado, lo que verifica que se ha logrado entrenar adecuadamente los pesos de los neurocontroladores. Los neurocontroladores han sido entrenados de tal forma que permiten realizar una acción de seguimiento sobre la velocidad de guiñada r, los resultados de las simulaciones muestran que logran realizar un giro coordinado adecuado incluso ante la ocurrencia de perturbaciones externas.