2. Maestría

Permanent URI for this communityhttp://98.81.228.127/handle/20.500.12404/2

Tesis de la Escuela de Posgrado

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Functional Central Limit Theorems and Unit Root Testing
    (Pontificia Universidad Católica del Perú, 2024-06-28) Aquino Chávez, Juan Carlos; Rodríguez Briones, Gabriel Hender
    This paper analyzes and employs two versions of the Functional Central Limit Theorem within the framework of a unit root with a structural break. Initial attention is focused on the probabilistic structure of the time series to be considered. Later, attention is placed on the asymptotic theory for nonstationary time series proposed by Phillips (1987a), which is applied by Perron (1989) to study the e¤ects of an (assumed) exogenous structural break on the power of the augmented Dickey- Fuller test and by Zivot and Andrews (1992) to criticize the exogeneity assumption and propose a method for estimating an endogenous breakpoint. A systematic method for dealing with e¢ ciency issues is introduced by Perron and Rodríguez (2003), which extends the Generalized Least Squares detrending approach due to Elliott, Rothenberg, and Stock (1996).
  • Thumbnail Image
    Item
    El teorema de Lévy-Steinitz y algunas de sus generalizaciones
    (Pontificia Universidad Católica del Perú, 2015-07-03) Sotelo Pejerrey, Alfredo; Alcántara Bode, Julio Cesar
    En el cuerpo de los números reales un resultado clásico de Riemann (1854) afirma que si tenemos una serie condicionalmente convergente entonces al cambiar el orden de los sumandos es posible hacerla converger a cualquier número deseado, o hacerla diverger. En el caso de series de números complejos condicionalmente convergentes podemos reordenar las partes reales (o imaginarias) y obtener cualquier suma prefijada; pero esta misma reordenación también afecta a la parte imaginaria (o real), pudiendo esta diverger, por tanto hacer que toda la serie de términos complejos diverja y no habremos conseguido nada. Entonces podemos preguntarnos: ¿Cuál es el correspondiente teorema para series de números complejos? P. Lévy (1905) probó que “el conjunto de todas las reordenaciones de una serie de números complejos es el vacío o la traslación de un subespacio vectorial real”. Este resultado fue generalizado a un espacio vectorial real n-dimensional por E. Steinitz (1913) que es uno de los capítulos que pretendemos estudiar en este trabajo de tesis de una manera accesible e interesante. De la misma manera nos podemos preguntar: ¿Cuál es la situación para espacios de Banach infinito dimensionales, se cumplirá el resultado de Steinitz? La respuesta a esta pregunta es negativa gracias a un contraejemplo propuesto por Marcinkiewicz en el espacio L2r0, 1s. Ahora lo natural es estudiar a que tipos de espacios se puede extender el resultado de Steinitz, es decir, dar condiciones a ciertos espacios de dimensión infinita para que el teorema de Steinitz se mantenga. Por ejemplo, W. Banaszczyk en [13] y [14], prob´o que un espacio de Fr´echet es Nuclear si y sólo si se cumple el teorema de Lévy-Steinitz.