2. Maestría

Permanent URI for this communityhttp://98.81.228.127/handle/20.500.12404/2

Tesis de la Escuela de Posgrado

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Teoría de Galois de ecuaciones diferenciales lineales
    (Pontificia Universidad Católica del Perú, 2020-08-06) Huaringa Mosquera, Suzanne Maria; Fernández Sanchez, Percy Braulio
    En teoría de Galois clásica, las raíces de un polinomio f(X) ∈ K [X], sus raíces generan una extensión E del cuerpo K, llamado el cuerpo de descomposición E de f(X). En el presente trabajo estudiaremos su análogo en teoría de Galois diferencial. Si dotamos a un anillo de una operacion llamada derivación (que verifica las propiedades básicas de la derivada usual) llamaremos a este par, anillo diferencial. Veremos que dado un cuerpo diferencial K y un operador diferencial lineal homogéneo L definido sobre el, sus soluciones generan una extension diferencial E del cuerpo diferencial K, dicha extensión es llamada de Picard-Vessiot. Mostraremos con detalle la construcción de una extensión de Picard-Vessiot [1] y veremos que en efecto siempre es posible realizarla. También veremos que es única salvo K−isomorfismo diferencial.
  • Thumbnail Image
    Item
    Minimal possible counterexamples to the two-dimensional Jacobian Conjecture
    (Pontificia Universidad Católica del Perú, 2019-06-12) Horruitiner Mendoza, Rodrigo Manuel; Valqui Hasse, Christian Holger
    Let K be an algebraically closed field of characteristic zero. The Jacobian Conjecture (JC) in dimension two stated by Keller in [8] says that any pair of polynomials P;Q ∈ L := K[x; y] with [P;Q] := axPayQ - axQayP ∈ Kx (a Jacobian pair ) defines an automorphism of L via x-> P and y -> Q. It turns out that the Newton polygons of such a pair of polynomials are closely related, and by analyzing them, much information can be obtained on conditions that a Jacobian pair must satisfy. Specifically, if there exists a Jacobian pair that does not define an automorphism (a counterexample) then their Newton polygons have to satisfy very restrictive geometric conditions. Based mostly on the work in [1], we present an algorithm to give precise geometrical descriptions of possible counterexamples. This means that, assuming (P;Q) is a counterexample to the Jacobian Conjecture with gcd(deg(P); deg(Q)) = k, we can generate the possible shapes of the Newton Polygon of P and Q and how it transforms under certain linear automorphisms. By analyzing the minimal possible counterexamples, we sketch a path to increase the lower bound of max(deg(P); deg(Q)) to 125 for a minimal possible counterexample to the Jacobian Conjecture.
  • Thumbnail Image
    Item
    Estudio del método de Galerkin discontinuo nodal aplicado a la ecuación de advección lineal 1D
    (Pontificia Universidad Católica del Perú, 2019-01-21) Sosa Alva, Julio César; Casavilca Silva, Juan Eduardo
    The present work focuses on Nodal Discontinuous Galerkin Method applied to the one-dimensional linear advection equation, which approximates the global solution, partitioning its domain into elements. In each element the local solution is approximated by using interpolation in such a way that the total numerical solution is a direct sum of those approximations (polynomials). This method aims at reaching a high order through a simple implementation. This model is studied by Hesthaven and Warburton [16], with the particularity of Joining the best of the Finite Volumes Method and the best of Finit Element Method . First, the main results are revised in detail concerning the Jacobi orthogonal polynomials; more precisely, its generation formula and other results which help implementing the method. Concepts regarding interpolation and best approximation are studied. Furthermore, some notions about Sobolev space interpolation is revised. Secondly, theoretical aspects of the method are explained in detail , as well as its functioning. Thirdly, both the two method consistency theorems (better approximation and interpolation), proposed by Canuto and Quarteroni [4], and error behavior theorem based on Hesthaven and Warburton [16] are explained in detail. Finally, the consistency theorem referred to the interpolation is veri ed numerically through the usage of the Python language as well as the error behavior. It is worth mentioning that, from our numerical results, we propose a new bound for the consistency (relation 4.2 (4.2)), whose demonstration will remain for a future investigation.
  • Thumbnail Image
    Item
    Aspectos geométricos de la irresolubilidad de una ecuación algebraica de grado cinco
    (Pontificia Universidad Católica del Perú, 2016-06-09) Sosaya Salazar, Sandro Wilfredo; Rosas Bazán, Rudy José
    En el presente trabajo estudiaremos que es imposible obtener una fórmula a base de operaciones fundamentales (adición, sustracción, división, multiplicación, potenciación y radicación) que nos dé las soluciones de una ecuación algebraica general de grado n mayor o igual que 5. Este problema fue resuelto por el matemático Niels Henrik y por Évariste Galois. Daremos una demostración algo “más geométrica" que la clásica demostración vía la teoría de Galois. La idea central será el estudio de las \deformaciones" que sufren las raíces de un polinomio como consecuencia de una \deformación" del polinomio.