2. Maestría

Permanent URI for this communityhttp://98.81.228.127/handle/20.500.12404/2

Tesis de la Escuela de Posgrado

Browse

Search Results

Now showing 1 - 8 of 8
  • Thumbnail Image
    Item
    Effects of the violation of the equivalence principle at DUNE
    (Pontificia Universidad Católica del Perú, 2020-07-21) Hoefken Zink, Jaime; Gago Medina, Alberto Martín
    A number of di erent e ects of the violation of the Equivalence Principle (VEP), taken as sub-leading mechanism of neutrino avor oscillation, are examined within the framework of the DUNE experiment. We study the possibility of obtaining a misleading neutrino oscillation parameter region caused by our unawareness of VEP. Additionally, we evaluate the impact on the measurement of CP violation and the distinction of neutrino mass hierarchy at DUNE. Besides, limits on VEP for a wide variety of textures of the matrix that connects neutrino gravity eigenstates to avor eigenstates are imposed. An extra-task of our study is to set limits on Hamiltonian added terms considering di erent energy dependencies (En, with n = 0; 1; 2; 3) that can be associated to the usual Lorentz violating terms de ned in the Standard Model Extension Hamiltonian. In order to understand our results, approximated analytical three neutrino oscillation probability formulae are derived.
  • Thumbnail Image
    Item
    Búsqueda de correlaciones entre eventos de rayos cósmicos ultraenergéticos con fuentes astrofísicas de rayos gamma
    (Pontificia Universidad Católica del Perú, 2020-01-30) Poma Almanza, Vicente Luis; Bazo Alba, José Luis
    En este trabajo se presenta un estudio que busca correlaciones estadísticamente significativas entre eventos de rayos cósmicos ultra-energéticos (UHECR, por sus siglas en inglés) con fuentes astrofísicas de rayos gamma. Para tal propósito, se ha escogido datos de UHECR del Observatorio Pierre Auger y Telescope Array, de los cuales son usados los eventos que poseen una energía mayor a 80 EeV. UHECR provenientes de fuentes extragalácticas son, con mayor probabilidad, compuestos por protones y núcleos ligeros, como el helio y el nitrógeno, y también núcleos pesados como el hierro. Basados en las fracciones de los rayos cósmicos que compondrían estos núcleos simuladas por la colaboración del Observatorio Pierre Auger, realizamos pruebas asignando a cada evento un tipo de núcleo. Para cada prueba, se considera el límite Greisen - Zatsepin - Kuzmin (GZK) como una máxima distancia a la cual podríamos detectar las partículas; así como deflexiones en la trayectoria causadas por campos magnéticos galácticos y extragalácticos. Las fuentes astrofísicas de rayos gamma consideradas son tomadas de diferentes catálogos como TeVCat, 2WHPS y 3FHL de donde obtenemos el tipo de fuente, la distancia a la cuál se encuentra y el flujo de fotones que emite. Para cada catálogo se realiza una búsqueda de correlación espacial dentro de un error angular debido a la desviación por campos magnéticos y limitándose a una distancia máxima dada por la longitud de atenuación. El resultado debe sopesar las correcciones estadísticas por los diferentes intentos. Las fuentes galácticas del catálogo TeVCat son las únicas que tienen correlaciones con los eventos más energéticos de rayos cósmicos. Sin embargo, no es muy probable que estas fuentes puedan acelerar a las partículas hasta las energías que poseen.
  • Thumbnail Image
    Item
    Neutrino trident production revisited for DUNE-like and MINERVA-like scenarios
    (Pontificia Universidad Católica del Perú, 2017-06-28) Sánchez Falero, Sebastián de Jesús; Gago Medina, Alberto Martín
    Revisamos sistemáticamente el proceso de producción de di-muones vía la dispersión de neutrinos en el campo Coulombiano del núcleo, conocido como producción tridente de neutrinos. A pesar de que este proceso tiene una sección de choque pequeña comparada con el proceso de dispersión neutrino-núcleo vía corriente cargada inclusiva en el Modelo Estándar, se caracteriza por una señal experimental muy clara. El par de muones cargados opuestamente es caracterizado investigando sus distribuciones cinemáticas. Para esto, hemos implementado una simulación detallada del proceso de producción tridente de neutrinos en el generador de eventos Montecarlo GENIE; y analizamos y simulamos los backgrounds relevantes. También exploramos métodos de Análisis Multivariado para mejorar la selección de la señal en el contexto de detectores tipo MINERVA y DUNE como representantes de experimentos de neutrinos de aceleradores presentes y venideros.
  • Thumbnail Image
    Item
    Constraining sleptons at the LHC in a supersymmetric low-scale seesaw scenario
    (Pontificia Universidad Católica del Perú, 2017-06-28) Cerna Velazco, Nhell Heder; Jones Pérez, Joel
    The discovery of the Higgs boson in the 8 TeV run of the LHC [1, 2] marks one of the most important milestones in particle physics. Its mass is already known rather precisely: mh = 125.09 ± 0.21 (stat.) ±0.11 (syst.) GeV [3], and the signal strength of various LHC searches has been found consistent with the SM predictions. While this completes the Standard Model (SM) particle-wise, several questions still remain open, for example: (i) Is it possible to include the SM in a grand unified theory where all gauge forces unify? (ii) Is there a particle physics explanation of the observed dark matter relic density? (iii) What causes the hierarchy in the fermion mass spectrum and why are neutrinos so much lighter than the other fermions? What causes the observed mixing patterns in the fermion sector? (iv) What stabilizes the Higgs mass at the electroweak scale? Supersymmetric model address several of these questions and consequently the search for supersymmetry (SUSY) is among the main priorities of the LHC collaborations. Up to now no significant sign for physics beyond SM has been found. The combination of the Higgs discovery with the (yet) unsuccessful searches has led to the introduction of a model class called ‘natural SUSY’ [4–15]. Here, the basic idea is to give electroweak-scale masses only to those SUSY particles giving a sizeable contribution to the mass of the Higgs boson, such that a too large tuning of parameters is avoided. All other particle masses are taken at the multi-TeV scale. In particular, masses of the order of a few hundred GeV up to about one TeV are assigned to the higgsinos (the partners of the Higgs bosons), the lightest stop (the partner of the top-quark) and, if the latter is mainly a left-stop, also to the light sbottom In addition the gluino and the heavier stop masses should also be close to at most a few TeV. Neutrino oscillation experiments confirm that at least two neutrinos have a non-zero mass. The exact mass generation mechanism for these particles is unknown, and both the SM and the MSSM remain agnostic on this topic. Although many ways to generate neutrino mass exist, perhaps the most popular one is the seesaw mechanism [16–21]. The main problem with the usual seesaw mechanisms lies on the difficulty in testing its validity. In general, if Yukawa couplings are sizeable, the seesaw relations require Majorana neutrino masses to be very large, such that the new heavy states cannot be produced at colliders. In contrast, if one requires the masses to be light, then the Yukawas need to be small, making production cross-sections and decay rates to vanish. A possible way out of this dilemma lies on what 3 is called the inverse seesaw [22], which is based on having specific structures on the mass matrix (generally motivated by symmetry arguments) to generate small neutrino masses. This, at the same time, allows Yukawa couplings to be large, and sterile masses to be light. We consider here a supersymmetric model where neutrino data are explained via a minimal inverse seesaw scenario where the gauge-singlet neutrinos have masses in the range O(keV) to O(100 GeV). We explore this with a parametrization built for the standard seesaw, and go to the limit where the inverse seesaw emerges, such that Yukawas and mixings become sizeable. Although non-SUSY versions of this scenario can solve the dark matter and matter-antimatter asymmetry problems [23–25], we shall make no claim on these issues in our model. In view of the naturalness arguments, we further assume that the higgsinos have masses of O(100 GeV), whereas the gaugino masses lie at the multi-TeV scale (see [26] for an example of such a scenario). In addition, we assume all squarks are heavy enough such that LHC bounds are avoided, and play no role in the phenomenology within this work1. In contrast we allow for fairly light sleptons and investigate the extent to which current LHC data can constrain such scenarios. This paper is organized as follows: in the next section we present the model. Section III summarizes the numerical tools used and gives an overview of the LHC analysis used for these investigations. In Section IV we present our findings for the two generic scenarios which differ in the nature of the lighest supersymmetric particle (LSP): a Higgsino LSP and a sneutrino LSP. In Section V we draw our conclusions. Appendices A and B give the complete formulae for the neutrino and sneutrino masses.
  • Thumbnail Image
    Item
    Explorando la sensibilidad de DUNE al decaimiento invisible de neutrinos dentro del contexto de las oscilaciones de neutrinos
    (Pontificia Universidad Católica del Perú, 2017-06-28) Ascencio Sosa, Marvin Vladimir; Gago Medina, Alberto Martín
    El fenómeno de oscilaciones de neutrinos ha sido extensamente estudiado experimentalmente y teóricamente en las últimas décadas. Esto no sólo implicó su confirmación sino también la medida de casi todos los parámetros asociados a ésta. Sin embargo, aún quedan pendientes algunas incógnitas por resolver como son la jerarquía de las masas de los neutrinos, la determinación de la fase que viola la simetría carga-paridad, el problema de las degeneraciones, entre otras. Para poder ser resueltos muchos de estos problemas requieren experimentos de gran escala y con la más óptima tecnología para la detección de neutrinos. El experimento DUNE (Deep Underground Neutrino Experiment) tendrá estas capacidades. Este experimento tiene una distancia fuente – detector de 1300km contando con un detector cercano de alta precisión y uno lejano de 40 kton hecho de Argón Líquido. Estas características no sólo permitirán resolver los problemas mencionados sino que además permitirán estudiar, por ejemplo, neutrinos provenientes del colapso de supernovas, así como el decaimiento del protón, entre otros procesos. En esta tesis se ha realizado una revisión detallada de la física de oscilación de neutrinos tanto en vacío como en materia, incorporando a este último el decaimiento invisible de neutrinos. Este fenómeno aunque descartado hoy para la explicación del problema de los neutrinos solares y atmosféricos. Tiene Actualmente una relevancia como un efecto subdominante dentro de las oscilaciones de neutrinos. Haciendo que la probabilidad de oscilación sufra un amortiguamiento. En esta tesis estudiaremos la sensibilidad de DUNE al nuevo parámetro que corresponde al decaimiento invisible de neutrinos. Viendo como distintos valores de este parámetro modifican el espectro de energía producido por los eventos que se observarían en DUNE. Nuestras simulaciones han sido hechas utilizando el paquete GLoBES (General Long Baseline Experiment Simulator) y usando como datos de entrada inputs, distribuciones proporcionadas por el propio experimento.
  • Thumbnail Image
    Item
    Disentangling atmospheric cascades started by gamma rays from cosmic rays with CORSIKA
    (Pontificia Universidad Católica del Perú, 2017-05-31) Rengifo Gonzáles, Javier; Bazo Alba, José Luis
    En este trabajo buscamos un método para diferenciar entre lluvias de partículas producidas por rayos cósmicos y por rayos gamma a energías de TeV, utilizando simulaciones CORSIKA. Este método intenta resolver el problema que existe en la búsqueda de señales de rayos gamma medidos por diversos experimentos frente a un fondo de flujo dominante de hadrones. Los resultados de este trabajo pueden aplicarse al estudio de Explosiones de Rayos Gamma (GRBs). Los GRBs emiten fotones muy energéticos, que al interactuar con la atmósfera terrestre, producen una gran cascada electromagnética de partículas secundarias, las cuales son detectables. El procedimiento sería simular eventos producidos por fotones, la señal, y protones, el fondo, que son las partículas más abundantes de los rayos cósmicos. Extraemos varios parámetros de los perfiles longitudinales de las lluvias de partículas, caracterizando las lluvias simuladas. Algunos de los parámetros de ajuste más importantes son el m_aximo de lluvia (Xmax), el ancho de la lluvia FWHM, el parámetro de asimetría, el número máximo de partículas Nmax y el comienzo de lluvia XStart. Existen diferentes experimentos utilizando tanques Cherenkov de agua y detectores de fluorescencia que pueden medir estos parámetros de las lluvias. Hemos probado dos métodos. El primero se basa en cortes simples, mientras que el segundo se basa en un análisis multivariado utilizando el paquete TMVA, que mejora los cortes individuales. El primer método se aplicó a las energías simuladas separadas de 102, 103, 104 y 105 GeV para encontrar cortes adecuados. Encontramos que Xmax, FWHM, Xstart y Nmax dependen de la energía. Posteriormente aplicamos estos cortes dependientes de la energía y otros cortes fijos a una muestra realista, que consiste en 104 eventos de señales (fotones) y 106 eventos de fondo (protones) que cubren un rango de energía de 102 a 105 GeV con diferentes espectros. Además, se introdujo un error en la energía simulada para simular la eficiencia de reconstrucción de energía de un detector. El resultado obtenido deja 54% eventos de señal y 12% eventos de fondo. Aplicando el análisis multivariado TMVA, encontramos que el método Boosted Decision Trees (BDT) era el mejor para distinguir la señal del fondo. El resultado para una eficiencia de señal similar fue 0:7% de eventos de fondo. Por último, utilizando cortes más estrictos en la BDT para mejorar la significancia, el resultado fue 1 evento de fotón por cada 1000 eventos de protón. Dada la proporción de flujo inicial, significa una capacidad de rechazo de fondo de 103. Por lo tanto, la viabilidad de la separación gamma/hadrón requiere una mejora adicional.
  • Thumbnail Image
    Item
    Impact of Galactic magnetic field modeling on searches of point sources via ultrahigh energy cosmic ray-neutrino correlations
    (Pontificia Universidad Católica del Perú, 2016-07-12) Carpio Dumler, José Alonso; Gago Medina, Alberto Martín
    We apply the Jansson-Farrar JF12 magnetic field model in the context of point source searches by correlating the Telescope Array ultrahigh energy cosmic ray data and the IceCube-40 neutrino candidates, as well as other magnetic field hypotheses. Our field hypotheses are: no magnetic field, the JF12 field considering only the regular component, the JF12 full magnetic field, which is a combination of regular and random field components, and the standard turbulent magnetic field used in previous correlation analyses. As expected from a neutrino sample such as IceCube-40, consistent with atmospheric neutrinos, we have found no significant correlation signal in all the cases. Therefore, this paper is mainly devoted to the comparison of the effect of the different magnetic field hypotheses on the minimum neutrino source flux strength required for a 5σ discovery and the derived 90% C.L. upper limits. We also incorporate in our comparison the cases of different power law indices α= 2.2, α=2.5 for the neutrino point source flux. The differences in the 5σ discovery flux for our magnetic field hypotheses is ∼1%–50%, being the maximum difference with the regular JF12 field and standard turbulent field models, being the standard turbulent higher than the regular one, while the minimum is between the no magnetic field and regular JF12 field. Considering the current flux upper limits, we find that IceCube requires a lifetime ≳5 years to observe neutrino-UHECR correlation signals. Our analysis for different power law indices yielded the same relative behavior between different magnetic field models.
  • Thumbnail Image
    Item
    Determinación del error sistemático del momentum de muones producidos por interacciones neutrino-nucleón en el detector MINERVA
    (Pontificia Universidad Católica del Perú, 2016-04-15) Díaz Bautista, Gonzalo A.; Gago Medina, Alberto Martín
    El Modelo Estándar describe todas las partículas observadas en la naturaleza hasta el momento así como las características que gobiernan a las interacciones fundamentales entre ellas. En especial es posible identificar a las interacciones electromagnética y débil, las cuales bajo determinadas condiciones de temperatura y energía pueden ser descritas a través de una sola teoría que engloba a ambas. A esta teoría se le denomina electrodébil y tiene como finalidad caracterizar las propiedades de la interacción manifiesta a partir de la mezcla de las interacciones electromagnética y débil, la que también lleva como nombre interacción electrodébil. Particularmente, los neutrinos son de especial inter es ya que, por un lado, interactúan por medio de la interacción débil muy raramente en comparación con otras partículas y, por el otro, no son acertadamente descritos por el Modelo Estándar. Por medio de observaciones experimentales que demostraban que los neutrinos cambian de sabor al propagarse, fenómeno llamado oscilaciones de neutrinos, se pudo llegar a la conclusión de que la implicancia de este fenómeno da como consecuencia que los neutrinos efectivamente sí tienen masa, algo que entra en contradicción con la descripción inicial del Modelo Estándar, el cual los describe como partículas sin masa. Es de esta manera que las oscilaciones de neutrinos han sido y siguen siendo en la actualidad objeto de interés en la Física de Altas Energías tanto teórica como experimental. A fin de poder realizar mediciones precisas de oscilaciones de neutrinos, los experimentos encargados de estas mediciones deben tratar de reducir sus incertidumbres en lo posible. Una de estas proviene de la caracterización de las secciones de choque de los neutrinos cuando interactúan con la materia, particularmente los nucleones al interior de los núcleos atómicos. El experimento MINERVA está orientado, entre otras cosas, a hacer una correcta caracterización de secciones de choque neutrino-nucleón por medio del estudio de un tipo específico de interacción denominada corriente cargada, cuyas partículas de estado final incluye hadrones y, principalmente, muones. La precisión en los resultados de secciones de choque está sujeta a que la energía y el momentum estos muones sean, a su vez, correctamente caracterizados, incluyendo sus incertidumbres sistemáticas. El objetivo de este trabajo de tesis es precisamente presentar la metodología usada para medir las energías de los muones producidos por interacciones de neutrinos y sus correspondientes incertidumbres asociadas a dicha medición.