2. Maestría

Permanent URI for this communityhttp://98.81.228.127/handle/20.500.12404/2

Tesis de la Escuela de Posgrado

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Investigation of different compliant mechanisms
    (Pontificia Universidad Católica del Perú, 2024-05-14) Sea Ordaya, Alexander Javier; Alencastre Miranda, Jorge Hernán
    The use of flexible mechanisms has been increasing in the recent years. This is due of the advantages that offer with respect to rigid mechanism. However, the method to study them become more complicated. Just to mention, the mathematical equations to investigate their behavior are of a higher level, so the assistance of calculation software is required. For this reason an analytical model is developed to facilitate the study of compliant mechanism. To do this, a review of the theory involved in the calculation of compliant mechanism is made and applied in the development of the analytical model. In this case the equations derived from the Euler-Bernoulli Beam Theory were used. In order to have a contrast of results, a software that use the Finite Element Method was used. After the simulation of the structures in both models, the relative errors were obtained. In the case of the simulations to obtain the displacement due to external forces, only the first node of the structures were defined as “Clamp” and the external forces were applied to the rest of the nodes. For this investigation, nine structures were simulated. To obtain a representative relative error, an average of them were calculated, which are 5.69% and 4.28% in the x and y axis respectively. Subsequently, because in all the cases, the first node is fixed, the moment at that node were obtained and compared. The average relative error found was 1.74%. After that, the simulations to obtain the forces due to the rotation of the structures were carried out. To make the simulations, the structures rotate in the range of -0.4 rad and 0.4 rad with steps of 0.1 rad. For this investigation, 4 structures were simulated and 14 parameters were defined. The maximal relative error found was 5.05%. Finally, an study of the behavior of the normalized moment at the first node of the 4 structures when the 14 parameters vary was carried out. In this investigation it was found on one hand that the parameters R1 and R2 from the structure 3 have good influence in the curves but on the other hand, the parameters R1 and α from the structure 4 have almost no influence.
  • Thumbnail Image
    Item
    Finite element simulation of real test procedures on drawn wires
    (Pontificia Universidad Católica del Perú, 2024-04-17) Sanchez Damas, Shwanne Kimberling; Alencastre Miranda, Jorge Hernan
    La simulación por elementos finitos se ha convertido en una herramienta clave para el análisis y optimización de procesos de ingeniería, ya que permite el análisis de un gran número de condiciones a un coste relativamente bajo. En este trabajo se ha utilizado esta herramienta para el análisis de un proceso de trefilado multietapa, así como para la implementación de ensayos de tracción y torsión en dichos alambres trefilados. El objetivo es evaluar los diferentes modelos de endurecimiento para el proceso de trefilado y para los ensayos de prueba señalados. Se ha realizado la simulación del ensayo de tracción del alambre tras cada etapa de trefilado y se ha automatizado la obtención de los parámetros mecánicos más importantes. Luego, estos se han contrastado con valores experimentales para analizar los resultados obtenidos con los diferentes modelos de endurecimiento. Asimismo, los valores de daño se calculan según los criterios de Cockroft y Latham para el proceso de trefilado, para el ensayo de tracción y adicionalmente se calcula el daño total en el alambre, es decir el daño generado debido al trefilado después de cada etapa juntamente con el daño generado por el ensayo de prueba. Todos estos procedimientos se han realizado utilizando diferentes modelos de endurecimiento seleccionados. Finalmente se analizan los resultados obtenidos, se presentan las conclusiones y la proyección de perspectivas para futuros estudios.
  • Thumbnail Image
    Item
    Análisis computacional y experimental sobre el comportamiento mecánico de las juntas no convencionales en los perfiles de aluminio estructural V-Slot
    (Pontificia Universidad Católica del Perú, 2024-04-03) La Rosa Rojas, Victor Armando; Alencastre Miranda, Jorge Hernan
    Los perfiles de aluminio estructural son normalmente obtenidos a partir de la extrusión, mediante este proceso se puede obtener distintas formas geométricas en la sección transversal del perfil, esto conlleva a que se desarrollen nuevas soluciones de juntas, que estén de acuerdo a los requerimientos de diseño. Es por ello que, el cumplimiento de las distintas solicitudes de diseño dependerá en gran medida de los distintos tipos de conexiones para unir estos tipos de perfiles. Dentro de este gran grupo se encuentran las juntas no convencionales, uno de estos casos es la junta tipo escuadra, que permite la sujeción de perfiles de aluminio en ángulos de 90 grados. Asimismo, permite el manejo y desmontaje sencillo de toda la estructura, sin recurrir al mecanizado, facilitando al operario poder reutilizar el perfil y la junta. Podemos encontrar, que este tipo de junta se utiliza en diferentes aplicaciones, tal como, en robots cartesianos, estructura de impresoras 3D, etc. Donde requieren soportar cargas medias bajas a altas. Sin embargo, la acción de dichas fuerzas sobre la unión no convencional requiere de cálculo y verificación de diseño. Pero, existe muy poca investigación disponible y los principales códigos estructurales (Eurocódigo 9) no proporcionan reglas definidas de diseño. Para evaluar el comportamiento mecánico de la junta y la influencia de estos sobre los perfiles de aluminio, se han desarrollado ensayos experimentales, cálculo teórico y análisis computacional. Las pruebas experimentales se desarrollaron en la universidad (PUCP). Estas, fueron sometidas a tracción y se verifico que lo primero que fallaba eran las tuercas cabeza de martillo, mas no el bracket, quien es la parte principal de la junta no convencional. Como consecuencia, el perfil horizontal se deflectaba en un aproximado de 2% respecto a la longitud efectiva de la viga. Asimismo, la fuerza máxima que soporta las aletas (canal) del perfil era casi 4 veces mayor a lo considerado por el fabricante. En general, todos los resultados obtenidos en la parte experimental, sirvieron para poder calibrar el modelo computacional, cuyos resultados fueron los esperados, con un margen de error de 9%. Finalmente, esta investigación ayudaría a suplir la falta de información. Como también, serviría para el diseño de estas juntas, tomando en cuenta los resultados obtenidos.
  • Thumbnail Image
    Item
    La geometría simpléctica en la mecánica clásica
    (Pontificia Universidad Católica del Perú, 2024-03-05) Rosales Ventocilla, Jimmy Leonardo; Castillo Egoavil, Hernan Alfredo
    Este trabajo se adentra en la exploración de las aplicaciones de la geometría simpléctica en la física en el contexto de la mecánica clásica. La motivación subyacente a esta exploración radica en la comprensión de que la teoría convencional proporcionada por la literatura tradicional resulta insuficiente para analizar todas las complejidades que un sistema físico puede resentar. Por ejemplo, asegurar la existencia de trayectorias periódicas o identificar simetrías en el sistema no puede alcanzarse plenamente con los conocimientos clásicos de la mecánica. Por lo tanto, se hace imperativo incorporar los conceptos de geometría diferencial y sistemas dinámicos en el marco de la mecánica. Para alcanzar este objetivo, comenzaremos por revisar los fundamentos de la mecánica, enfocándonos inicialmente en los formalismos Lagrangiano y Hamiltoniano. A medida que desarrollemos estos conceptos esenciales, observaremos cómo emergen de manera natural los conceptos de variedades diferenciales, formas diferenciales, formas simplécticas y otros elementos relacionados con la geometría diferencial y simpléctica. Adicionalmente, profundizaremos en la teoría de invariantes, donde presentaremos y demostraremos el teorema de Noether en el contexto de la geometría diferencial. Este teorema proporcionará una comprensión más profunda para abordar los sistemas físicos desde una perspectiva geométrica. Finalmente, exploraremos cómo estas influyentes teorías matemáticas, tanto la teoría de invariantes como la geometría simpléctica, nos dotarán de herramientas más sólidas para enfrentar las complejidades de los sistemas físicos analizados en la literatura de la mecánica clásica, permitiéndonos resolverlos de manera más efectiva.