2. Maestría
Permanent URI for this communityhttp://98.81.228.127/handle/20.500.12404/2
Tesis de la Escuela de Posgrado
Browse
1 results
Search Results
Item Clusterización basada en una mixtura con distribuciones normales contaminadas multivariadas con datos incompletos: Una aplicación a la evaluación de habilidades socioemocionales(Pontificia Universidad Católica del Perú, 2023-08-31) Zegarra López, Ángel Christopher; Benites Sánchez, Luis EnriqueAunque la distribución normal es útil en una variedad de contextos, enfrenta ciertas limitaciones al modelar datos que contienen valores extremos. Estos valores pueden generar “colas” más pesadas en la distribución, en contraste con las colas más ligeras de la distribución normal. Por lo tanto, en tales circunstancias, la distribución normal contaminada se presenta como una alternativa efectiva. Este ajuste es especialmente significativo en aplicaciones como la agrupación basada en modelos. En este método, es habitual emplear distribuciones normales multivariadas como fundamento para la agrupación. No obstante, la estimación de parámetros puede verse afectada por la presencia de valores extremos. En este estudio, implementamos la distribución normal contaminada multivariada como base para la agrupación basada en modelos, tal como propone Tong y Tortora (2022). Explicamos las características del modelo y llevamos a cabo un estudio de simulación para contrastar su desempeño con la distribución normal multivariada y la distribución t multivariada. Finalmente, aplicamos un proceso de agrupación basado en una mezcla de distribuciones normales contaminadas multivariadas a un conjunto de datos reales. Estos datos se derivan de los resultados de la Evaluación de Habilidades Socioemocionales, una iniciativa implementada por el Ministerio de Educación de Perú en 2021.