2. Maestría

Permanent URI for this communityhttp://98.81.228.127/handle/20.500.12404/2

Tesis de la Escuela de Posgrado

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Estudio del método de Galerkin discontinuo nodal aplicado a la ecuación de advección lineal 1D
    (Pontificia Universidad Católica del Perú, 2019-01-21) Sosa Alva, Julio César; Casavilca Silva, Juan Eduardo
    The present work focuses on Nodal Discontinuous Galerkin Method applied to the one-dimensional linear advection equation, which approximates the global solution, partitioning its domain into elements. In each element the local solution is approximated by using interpolation in such a way that the total numerical solution is a direct sum of those approximations (polynomials). This method aims at reaching a high order through a simple implementation. This model is studied by Hesthaven and Warburton [16], with the particularity of Joining the best of the Finite Volumes Method and the best of Finit Element Method . First, the main results are revised in detail concerning the Jacobi orthogonal polynomials; more precisely, its generation formula and other results which help implementing the method. Concepts regarding interpolation and best approximation are studied. Furthermore, some notions about Sobolev space interpolation is revised. Secondly, theoretical aspects of the method are explained in detail , as well as its functioning. Thirdly, both the two method consistency theorems (better approximation and interpolation), proposed by Canuto and Quarteroni [4], and error behavior theorem based on Hesthaven and Warburton [16] are explained in detail. Finally, the consistency theorem referred to the interpolation is veri ed numerically through the usage of the Python language as well as the error behavior. It is worth mentioning that, from our numerical results, we propose a new bound for the consistency (relation 4.2 (4.2)), whose demonstration will remain for a future investigation.