2. Maestría
Permanent URI for this communityhttp://98.81.228.127/handle/20.500.12404/2
Tesis de la Escuela de Posgrado
Browse
Search Results
Item Formación de patrones inducidos por un flujo de corte en el modelo de Lotka-Volterra modificado(Pontificia Universidad Católica del Perú, 2017-04-28) Balbín Arias, Julio José; Vásquez Rodríguez, Desiderio AugustoEn esta tesis se analiza la formación de patrones debido a inestabilidades en un sistema de reacción - difusión - advección generadas mediante un flujo de corte. Las inestabilidades son similares a la formación de patrones de Turing en un sistema de activador - inhibidor donde una condición necesaria es que la difusividad del inhibidor es mayor que la difusividad del activador. En presencia de un flujo de corte, nosotros encontramos que esta condición no es necesaria. Nosotros analizamos dos modelos para un flujo de corte, uno de ellos consiste en dos capas moviéndose con diferentes velocidades, el otro correspondiente a un flujo de Poiseuille dentro de un tubo bidimensional. La inestabilidad aparece cuando la velocidad promedio del flujo aumenta por encima de cierta velocidad umbral, conduciendo así a los patrones que se mueven según el marco de referencia del flujo. Nuestros resultados, patrones aislados de Turing, pueden ser obtenidos usando una difusividad efectiva por efecto de la dispersión de Taylor.Item Surface tension driven flow on a thin reaction front(Pontificia Universidad Católica del Perú, 2017) Guzmán Ramírez, Roberto Antonio; Vásquez Rodríguez, Desiderio AugustoSurface tension driven convection affects the propagation of chemical reaction fronts in liquids. The changes in surface tension across the front generate this type of convection. The resulting fluid motion increases the speed and changes the shape of fronts as observed in the iodate-arsenous acid reaction. We calculate these effects using a thin front approximation, where the reaction front is modeled by an abrupt discontinuity between reacted and unreacted substances. We analyze the propagation of reaction fronts of small curvature. In this case the front propagation equation becomes the deterministic Kardar-Parisi-Zhang (KPZ) equation with the addition of fluid flow. These results are compared to calculations based on a set of reaction-diffusion-convection equations.Item Inestabilidades de un frente de propagación en dos dimensiones en una reacción-difusión cúbica(Pontificia Universidad Católica del Perú, 2017-02-13) Llamoca Requena, Edwin Agapito; Vásquez Rodríguez, Desiderio AugustoSe estudian los frentes de propagación en una región de dos dimensiones con forma de un tubo rectangular finito en sistemas isotérmicos autocatalíticos. Enfocamos el caso donde dos especies intervienen en una reacción y estas especies tienen coeficientes de difusión que pueden diferenciarse significativamente en magnitud. En las configuraciones de dos dimensiones, con diferentes coeficientes de difusión, los frentes de propagación pueden convertirse en inestables. La inestabilidad ocurre cuando la razón de los coeficientes de difusión excede de un valor crítico. La forma espacio temporal de los frentes no planos en tales sistemas dependen del dominio rectangular perpendicular al frente, generándose para tiempos largos, intermitencias bien definidas separadas en cada intervalo de tiempo. A medida que se incrementa el ancho del dominio rectangular, aparece el caos. También estudiamos las formas de propagación de los frentes cuando el ancho del dominio es más grande que el largo del tubo, notándose simetría de acuerdo a las condiciones iniciales hasta un cierto tiempo y luego se rompe la simetría para tiempos posteriores. Por último al sistema reacción-difusión cúbica le incluimos un flujo advectivo de Poiseuille que dan como resultado dominio de frentes simétricos y asimétricos variando la velocidad promedio del ujo desde valores negativos a valores positivos.