2. Maestría
Permanent URI for this communityhttp://98.81.228.127/handle/20.500.12404/2
Tesis de la Escuela de Posgrado
Browse
Search Results
Item A crowd-powered conversational assistant for the improvement of a neural machine translation system in native peruvian language(Pontificia Universidad Católica del Perú, 2019-09-13) Gómez Montoya, Héctor Erasmo; Oncevay Marcos, Felix ArturoPara las comunidades más pequeñas y nativas en un país, es muy difícil encontrar información que se encuentre en su idioma original, esto debido a que su lengua no tiene el alcance ni la cantidad suficiente de hablantes, para poder seguir siendo transmitida. A este tipo de lengua se le denomina minoritaria o de pocos recursos. Una de las principales formas en las que el gobierno incentiva el proceso de multilingüismo es proporcionando educación en el idioma nativo a su población, tal es el caso de los hablantes de Shipibo-Konibo que se encuentran dispersos a lo largo de la amazonía del Perú. Ellos cuentan con colegios donde se les imparten clases en su lengua nativa para los niveles de primaria y secundaria. Sin embargo, una necesidad con la que cuentan los pobladores es que la cantidad de material educativo completamente traducido a Shipibo-Konibo es reducida. Esto debido a que el proceso de traducción es muy costoso y poco confiable. El Grupo de investigación en Inteligencia Artificial de la PUCP (IA-PUCP, ex GRPIAA) ha desarrollado una plataforma que utiliza corpus paralelos la creación de un modelo estadístico de traducción automática para las lenguas Shipibo-Konibo y español. Este modelo sufre de ciertas limitantes, entre las cuales tenemos: la cantidad de recursos bibliográficos y material completamente traducido, esto debido a que al ser una lengua minoritaria o de pocos recursos carecen de facilidades para la generación de nuevos corpus. Por otro lado, se desea mejorar el modelo actual en parámetros de eficiencia y obtener mejores resultados en las traducciones. En este contexto nace la pregunta que motiva el presente trabajo: ¿de qué manera podemos incrementar el corpus paralelo de forma eficiente y confiable para la mejora del modelo actual de traducción automática? Por consiguiente, en el presente trabajo se propone desarrollar un agente conversacional que permita la generación de nuevos corpus paralelos entre Shipibo-Konibo y español que permitan mejorar un modelo de traducción automática neuronal en las lenguas ya mencionadas.