2. Maestría
Permanent URI for this communityhttp://98.81.228.127/handle/20.500.12404/2
Tesis de la Escuela de Posgrado
Browse
6 results
Search Results
Item Optimización de pago de dividendos bajo una tasa de interés estocástica considerando el tiempo de ruina(Pontificia Universidad Católica del Perú, 2024-10-31) Peres Malarin, Luis Miguel; Farfán Vargas, Jonathan SamuelEn el presente trabajo de tesis estudiaremos el problema de optimización de pago de dividendos para una compañía de seguros. El excedente de la empresa y la tasa de interés de descuento son modelados por procesos de difusión. Además, en la función de valor clásica se considera un término que depende de la vida útil de la compañía. Este término representa el valor presente que una compañía gana mientras se encuentra en actividad. El objetivo principal del problema es encontrar la función de valor y una estrategia ´optima para el pago de dividendos que maximice el valor esperado de los dividendos descontados acumulados hasta el tiempo de ruina de la compañía. Para este trabajo consideraremos dos escenarios: (I) Cuando la tasa de dividendos es acotada. En este primer escenario tenemos dos subescenarios que se originan por los parámetros iniciales asociados al modelo. En el primero, encontramos la forma explícita de la función de valor y la estrategia de pago de dividendos ´optima. En este caso, se debe pagar la máxima tasa durante la vida útil de la compañía. Además, demostramos un teorema de verificación asociado a nuestro problema. En el segundo caso, encontramos la solución de la ecuación HJB asociada al modelo, la cual a través de un teorema de verificación demostramos que es efectivamente la función de valor asociada a nuestro problema. La estrategia de pago de dividendos ´optima es de tipo barrera. Es decir, se debe pagar la máxima tasa cuando el excedente de la compañía supera una cierta barrera y no se debe pagar dividendos cuando el excedente está por debajo de esta barrera. En ambos subescenarios se muestran ejemplos numéricos para diferentes valores de los parámetros iniciales de nuestro modelo. (II) Cuando la tasa de dividendos no es acotada. En este caso, encontramos la solución de la ecuación HJB asociada a nuestro modelo y a través de un teorema de verificación demostramos que la solución obtenida es efectivamente la función de valor asociada a nuestro problema. Además, encontramos de forma explícita la función de valor y la estrategia ´optima de pago de dividendos. Esta estrategia consiste en pagar en cada instante el máximo de los excesos del excedente de la compañía sobre una cierta barrera hasta dicho instante, caso contrario no se paga dividendos. Finalmente, se muestran ejemplos numéricos para poder visualizar los resultados obtenidos.Item Aspectos geométricos de la envoltura convexa del movimiento browniano planar(Pontificia Universidad Católica del Perú, 2021-01-19) Quesada Vargas, Juan Carlos; Farfán Vargas, Jonathan SamuelEn el presente trabajo de tesis estudiaremos algunos aspectos geométricos de la envoltura convexa de una trayectoria del movimiento browniano planar en un determinado intervalo de tiempo. De manera más precisa, estudiaremos el perímetro, el área y el diámetro de dicha envoltura convexa. En el primer capítulo, revisaremos el movimiento browniano planar y algunas de sus propiedades tales como el principio de reflexión, la ley de la terna de Lévy y la ley del arcoseno que nos servirá como base teórica para justificar las cotas establecidas por James McRedmond y Chang Xu para estimar el diámetro promedio de dicha envoltura convexa. En el segundo capítulo se estudiarán las principales propiedades de cuerpos convexos y la envoltura convexa de una curva donde se desarrollará las propiedades que nos permitan justificar de manera más clara la fórmula de Cauchy para el perímetro y el área de un cuerpo convexo. En el tercer capítulo se utilizará como teorema principal la fórmula de Cauchy para justificar lo que se encontró de manera explícita tanto para el perímetro promedio y el área promedio de la envoltura convexa del recorrido de un movimiento browniano planar hasta el instante t = 1. Por último, en el cuarto capítulo se utilizará la terna de Lévy como teorema principal para el desarrollo de la estimación del diámetro promedio de dicha envoltura convexa.Item Selección de portafolio bajo el enfoque media-varianza y con cambio de régimen(Pontificia Universidad Católica del Perú, 2019-06-27) Ramos Torres, Luis Martín; Farfán Vargas, Jonathan SamuelIn the present work, we will study the portfolio selection problem under the meanvariance framework with regime switching. This regime switching is modeled by an homogeneous finite-state Markov chain and affects the relevant financial parameters, such as the appreciation rate and volatility of asset returns. The aim of the agent under study (for example, an investor, a bank, etc.) is to find a portfolio such that the risk of his terminal wealth is minimized while his expected terminal wealth is fixed at some acceptable level. We consider two situations of analysis: (I) A financial market without risk-free asset. Modeling the financial market in this way adds realism to the portfolio selection problem, especially for long-term investment horizons. In this case, we will formulate the mean-variance optimization problem and a feasibility theorem will be proved. Furthermore, we will derive the efficient portfolio and the efficient frontier in closed form. (II) A problem of asset-liability management. In this case, we will consider a financial market with risk-free asset and two relevant stochastic processes: the asset value process of the company and its liability value process. The goal of it is to obtain the surplus value process of the company, which is the difference between asset value and liability value. As in the previous case, we will formulate the mean-variance optimization problem and a feasibility theorem will be proved. Furthermore, we will derive the efficient portfolio and the efficient frontier in closed form.Item Optimización de dividendos bajo una tasa estocástica y con cambio de régimen(Pontificia Universidad Católica del Perú, 2018-10-22) Anco Blas, Edith Chavely; Farfán Vargas, Jonathan SamuelEn el presente trabajo, estudiaremos el problema de optimización de dividendos para una compañía de seguros cuya reserva de efectivo y la tasa de interés de descuento son modelados por procesos de difusión con los coeficientes de la tendencia y la volatilidad dependiendo del régimen económico externo (condiciones macroeconómicas). Este cambio de régimen está modelado por una cadena de Markov observable de estados finitos. El objetivo es encontrar un esquema de distribución de dividendos que maximice el valor esperado de los dividendos acumulados descontados hasta el tiempo de ruina. Consideramos dos escenarios: (I) Cuando el proceso de dividendos tiene una tasa y esta es uniformemente acotada. En este caso, probaremos un Teorema de verificación que indica que la soluci´on de la ecuación Hamilton-Jacobi-Bellman correspondiente coincide con la función de valor asociada a nuestro problema y que bajo ciertas condiciones una estrategia óptima existe. Además, encontraremos una forma explícita de una estrategia óptima, en el caso de dos regímenes. Esta estrategia consiste en que la compañía pagar´a dividendos con la tasa máxima siempre y cuando el proceso de reservas después de pagar dividendos sea igual o mayor a algunos niveles críticos (barreras) y no pagar nada cuando se encuentre por debajo de estas barreras. (II) En general, cuando el proceso de dividendos es solo cadlag. En este caso, obtenemos una cota superior para la función de valor asociada a nuestro problema. Adema´s, a partir de los resultados obtenidos en la literatura existente en problemas similares y de los resultados obtenidos en el presente trabajo conjeturamos una posible forma de la estrategia óptima.Item Integración estocástica y tiempo local(Pontificia Universidad Católica del Perú, 2018-02-20) Mogollón Aparicio, Juan Arturo; Farfán Vargas, Jonathan SamuelEn el presente trabajo presentamos una construcción del movimiento browniano para lo cual probaremos en forma detallada los teoremas de extensión de Kolmogorov y el de Kolmogorov-Censot, luego hacemos una construcción detallada y autocontenida de la integral estocástica en la que los integradores son martingalas continuas cuadrado integrables. Esta es una posible extensión a la clásica integral de Itô en la cual el integrador es un movimiento browniano. En este contexto de integración estocástica enunciaremos y probaremos la fórmula de Itô y algunas de sus consecuencias. Finalmente trabajaremos con el tiempo local, la fórmula de Tanaka y estudiaremos una particular prueba.Item Valuación de opciones para retornos de Levy simétricos(Pontificia Universidad Católica del Perú, 2016-11-14) Grandez Vargas, Rodrigo Franklin; Farfán Vargas, Jonathan SamuelEl trabajo consiste en el estudio de un modelo de valuación de opciones europeas de compra, el cual asume que la dinámica del precio del activo financiero subyacente está caracterizada por un proceso de Lévy simétrico. El modelo busca capturar la evidencia empírica mostrada por los precios de los activos financieros. Este modelo es trabajado en [12], artículo que será seguido de cerca. La particularidad del modelo consiste en incorporar procesos estocásticos de salto con distribuciones marginales simétricas, lo cual reproduce de manera más fiel la realidad. En este trabajo, primero se revisa en detalle los principales resultados obtenidos en [12], más precisamente, se revisa la definición de medida martingala equivalente natural en el contexto del modelo. Se estudia la existencia y unicidad de la medida martingala equivalente natural (MMEN). Luego, se usa esta medida para obtener el precio de la opción y calcular los parámetros de la distribución simétrica bajo esta medida MMEN y así obtener una fórmula generalizada tipo Black-Scholes. Además, se realizan aplicaciones con procesos de Lévy específicos tales como Varianza Gamma Simétrico, Normal Inverso Gaussiano Simétrico. Segundo, para extender las aplicaciones proporcionadas en [12], se propone una aplicación adicional. Así, se elige el proceso de Meixner Simétrico (MS) para describir la dinámica del activo subyacente y obtener el precio de la opción de compra europea en el contexto del modelo MS. Finalmente, se realiza simulaciones numéricas del precio de las opciones europeas bajo los tres modelos estudiados, para luego comparar dichos precios con el precio obtenido en el modelo clásico de Black-Scholes.