2. Maestría

Permanent URI for this communityhttp://98.81.228.127/handle/20.500.12404/2

Tesis de la Escuela de Posgrado

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Curvatura y fibrados principales sobre el círculo (Curvature and principal S 1 -bundles)
    (Pontificia Universidad Católica del Perú, 2018-10-04) Lope Vicente, Joe Moises; Cuadros Valle, Jaime
    The aim of this thesis is to study in detail the work of S. Kobayashi on the Riemannian geometry on principal S1-bundles. To be more precise, we explain how to obtain metrics with constant scalar curvature on these bundles. The method that we use is based in [18]. The basic idea behind Kobayashi’s construction is to slightly deform the Hopf fibration S1 ‹→ S2n+1 −→ CPn in a such a way that the corresponding sectional curvatures are not far from the produced by the standard metrics on the sphere and the complex projective space on the Hopf fibration. This deformations can be controlled applying the notions of Riemaniann and Kahlerian pinching (see Chapter 3). Furthermore, thanks to a technique developed by Hatakeyama in [14], it is possible to obtain less generic metrics but with a larger set of symmetries on the total space: Sasaki metrics. Actually, If one chooses as a base space a K¨ahler-Einstein manifold with positive scalar curvature one can obtain a Sasaki-Einstein metric.
  • Thumbnail Image
    Item
    Estructuras métricas de contacto y polinomios de Brieskorn-Pham
    (Pontificia Universidad Católica del Perú, 2016-11-15) Ballón Bordo, Álvaro José; Cuadros Valle, Jaime
    Esta tesis presenta una visión global y prácticamente autocontenida de los avances que se llevaron a cabo en la décadas de los años 1960 y 1970 con respecto al estudio de las estructuras de contacto en variedades diferenciables. Nuestro objetivo principal sería exhibir explícitamente estructuras métricas de contacto en las denominadas variedades de Brieskorn, que surgen como el conjunto de ceros de los llamados polinomios de Brieskorn-Pham intersecado con la esfera unitaria. Para ello comenzaremos desarrollando a grandes rasgos los conceptos relacionados a la geometría simpléctica, la geometría compleja y las variedades de Kähler. Luego realizaremos un esbozo de prueba del teorema de Boothby-Wang, que constituye una generalización de la fibración de Hopf. A continuación presentaremos la construcción de estructuras métricas de contacto, en particular, las denominadas estructuras de Sasaki. El objetivo de ello es obtener estructuras de Sasaki en las variedades de Brieskorn, las cuales exhibiremos en coordenadas a fin de obtener un procedimiento para construirlas en una variedad de Brieskorn arbitraria. Por último, relacionaremos lo estudiado con la fibración de Boothby-Wang para probar que las estructuras construidas pueden ser proyectadas como hipersuperficies en el espacio proyectivo complejo. Debido a la naturaleza de las nociones presentadas, se espera que el lector tenga un conocimiento elemental de la geometría riemanniana.