2. Maestría

Permanent URI for this communityhttp://98.81.228.127/handle/20.500.12404/2

Tesis de la Escuela de Posgrado

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Mixtura finita de una distribución Birnbaum-Saunders basado en la familia de mixtura en parámetros de escala de distribuciones normal asimétrica
    (Pontificia Universidad Católica del Perú, 2021-10-06) Gavidia Pucllas, Daniel Elías; Benites Sánchez, Luis Enrique
    La presente tesis muestra la distribución mixtura de distribuciones Birnbaum-Saunders basados en mixturas de escala normal asimétrica (MF-BS-MENA). Este modelo es una extensión a la propuesta de Maehara (2018a) para datos unimodales basados en distribuciones con mixtura de escala normal asimétrica utilizada para modelar datos con percentiles extremos y altamente concentrados a la izquierda de la distribución. El modelo propuesto permite modelar datos con dos o más componentes de mixtura de distribuciones asimétricas como la t de Student asimétrica (TA), la Slash asimétrica (SLA), y la normal contaminada asimétrica (NCA). Para estimar los parámetros del modelo propuesto se presenta un método de estimación basado en el algoritmo de maximización condicional de la esperanza (una extensión del algoritmo EM). Además, se desarrollan simulaciones que muestran la precisión de las estimaciones y los errores estándar. Por último, se realizan aplicaciones con un conjunto de datos reales.
  • Thumbnail Image
    Item
    Modelo de regresión no lineal basado en una mixtura de la distribución senh-normal/independiente en el error
    (Pontificia Universidad Católica del Perú, 2021-09-22) Ocampo Corrales, Carlos Iván; Benites Sánchez, Luis Enrique
    La distribución normal, si bien útil para explicar la distribución de muchos conjuntos de datos, a veces es inadecuada para ello. En este sentido, en muchos casos es conveniente trabajar con transformaciones de la distribución normal por ejemplo log-normal, Birnbaum- Saunders (BS) y Senh-Normal (SN). En esta tesis se presenta un modelo de regresión no lineal basado en una mixtura finita de distribuciones Senh-Normal/Independiente (SNI) en el error considerando dos casos específicos de esta distribución, SN y Senh-t-Student (SSt), respectivamente. En el contexto de regresión se plantea una metodología de estimación mediante la aplicación del algoritmo EM y también para el cálculo de los errores estándar. Se realizaron estudios de simulación para evaluar las propiedades de las estimaciones. Los resultados muestran que el modelo estima de manera satisfactoria los parámetros, más aún, evaluando el sesgo y el RSME de las estimaciones se observa que el modelo cumple con las propiedades asintóticas de los estimadores de máxima verosimilitud. Asimismo, se realizaron estudios de aplicación tanto para el modelo SN como SSt.