2. Maestría
Permanent URI for this communityhttp://98.81.228.127/handle/20.500.12404/2
Tesis de la Escuela de Posgrado
Browse
2 results
Search Results
Item Distribución uniforme sobre la Intersección de un simplex y una esfera en dimensiones altas(Pontificia Universidad Católica del Perú, 2017-10-18) Cabanillas Banda, Wilson Alberto; Beltrán Ramírez, Johel VictorinoLa presente tesis es acerca de deducir propiedades asintóticas acerca de la distribución uniforme sobre la intersección de una esfera y un simplex en Rn cuando la dimensión del espacio euclideano tiende a infinito. Claramente, para que tal intersección sea no vacía es necesario que los tamaños de la esfera y el simplex, que también haremos crecer al infinito, sean configurados de modo adecuado (esto es discutido con detalle en el Lema 2.1). El resultado importante de este trabajo es que, de acuerdo a la \razón asintótica" entre los tamaños de la esfera y el simplex, la distribución uniforme sobre la intersección de ellos se comportaría de modos absolutamente distintos. Para dar una idea aproximada del resultado que conseguiremos podemos explicarlo del siguiente modo: Si n es muy grande y (X1; : : : ;Xn) es un punto elegido uniformemente sobre la intersección de una esfera (euclideana) de radio (raíz de nb) y un simplex de radio n (respecto a la norma de la suma) en Rn entonces (i) Para 1 < b < 2 el tamaño de cada componente jXj j es de orden menor o igual a (raíz de log(n) (en particular, no existe una componente notablemente mayor que las demás). (ii) Para b > 2, existe una componente del vector cuyo tamaño es de orden raíz de n) mientras que el tamaño del resto de componentes es de orden estrictamente menor. Los enunciados precisos de estas afirmaciones son los Teoremas 2.3 y 2.4 de la Sección 2.2. Estos teoremas incluyen también el resultado de lo que sucede en el valor crítico b = 2.Item Cambio de fase en el proceso de contacto sobre Zd(Pontificia Universidad Católica del Perú, 2015-04-24) Oliveros Ramos, David Ricardo; Beltrán Ramírez, Johel VictorinoEl proceso de contacto en un tipo de proceso de Markov en tiempo continuo para el cual el espacio de estados, también llamados configuraciones, es X = {0, 1} Z d y en el cual cada coordenada de una configuración del proceso pasa de 1 a 0 a una tasa constante igual a 1, y el paso de 0 a 1 es proporcional a la cantidad de unos en las coordenadas vecinas, siendo λ la constante de proporcionalidad que parametriza el modelo. En este trabajo se muestra que el proceso de contacto puede ser construido formalmente a partir de la descripción anterior de las tasas de transición entre las configuraciones, mostrando además que existe un único proceso de Markov definido por tales tasas. Se utilizaron algunas técnicas básicas para el estudio de sistemas de partículas en interacción (monotonicidad, acoplamiento, dualidad) que permitieron demostrar algunas propiedades del proceso de contacto, como la autodualidad y la monotonía de la ergodicidad con respecto al parámetro del proceso. El resultado principal es mostrar que en una dimensión (d = 1) existe un parámetro crítico finito (λc) que determina un cambio de fase para la ergodicidad del proceso, siendo ergódico si λ < λc y que existen al menos dos medidas invariantes para el proceso si λ > λc. Este resultado se generaliza para el proceso en d dimensiones, mostrando que el parámetro crítico λd está acotado por 1/ 2d ≤ λd ≤ 2/d .