2. Maestría
Permanent URI for this communityhttp://98.81.228.127/handle/20.500.12404/2
Tesis de la Escuela de Posgrado
Browse
Search Results
Item Generación de datos sintéticos usando Redes Generativas Adversariales para la minería de datos respetuosa de la privacidad(Pontificia Universidad Católica del Perú, 2021-05-28) Montalvo García, Peter Jonathan; Alatrista Salas, HugoLa minería de datos permite conocer patrones en grandes volúmenes de datos; pero dentro de estos datos puede haber información sensible que compromete la privacidad. En tal sentido, se han desarrollado técnicas para la minería de datos respetuosa de la privacidad, siendo la más utilizada la privacidad diferencial debido a las propiedades que otorga a los datos resultantes, de la mano de técnicas de aprendizaje profundo. Estas técnicas se han utilizado en conjuntos de datos de números escritos e imágenes, pero no en datos de georreferenciación. El presente trabajo tiene como objetivo medir la eficacia de los datos sintéticos generados a través redes generativas adversariales y privacidad diferencial en datos de georreferenciación. La generación de estos datos se hace a través de selección de datos, sanitización para la obtención de la base de datos sintéticos y evaluación a través de modelos de movilidad a partir de las trazas que sirven para medir la pérdida de información y el riesgo de divulgación. En líneas generales, los resultados demuestran que la aplicación de estas técnicas sobre datos de georreferencia da como producto un conjunto de datos sintéticos con una pérdida de información y riesgo de divulgación bajos, y se concluye que estos conjuntos de datos obtenido se puede realizar una minería de datos similar a la que se haría con los datos originales y sin comprometer información sensible.Item Measuring the attractiveness of tourist spots through credit and debit card transactions(Pontificia Universidad Católica del Perú, 2021-03-16) Rojas Bustamante, Leibnitz Pavel; Alatrista Salas, Hugo; Núñez del Prado Cortez, MiguelTourism is an essential economic activity for some regions and countries that has been increasing its value for governments and private companies in the last years. Some researches, found in state of the art, have demonstrated the importance of knowing how tourists behave. Furthermore, several approaches have been performed to identify tourist behavior in different places worldwide using different data sets. Thus, this study’s main purpose is to identify domestic tourists using bank card transactions and define an attractiveness function for every region in the country through the Huff model. Additionally, some communities will be generated for describing tourism mobility. The results obtained in the present work reveal a new way of defining domestic tourists and a function to estimate the attractiveness level for departments in Peru.