3. Licenciatura

Permanent URI for this communityhttp://98.81.228.127/handle/20.500.12404/3

Tesis de todas las facultades

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Evaluación cuantitativa de la prueba de golpeteo de dedos en pacientes con Parkinson mediante un algoritmo basado en técnicas de visión por computadora
    (Pontificia Universidad Católica del Perú, 2024-10-24) Meza Rojas, Harif Joe; Romero Gutiérrez, Stefano Enrique; Castañeda Aphan, Benjamín
    La enfermedad de Parkinson es un trastorno neurodegenerativo crónico y progresivo. En la actualidad, se usan diversas escalas que permiten determinar el nivel de gravedad en los pacien- tes. Sin embargo, estas tienen un carácter subjetivo. En la presente tesis, se analiza, a partir de la segmentación de videos, la prueba denominada Golpeteo de dedos que pertenece a la escala MDS-UPDRS y se clasifica a los pacientes en niveles de gravedad a través de medidas estadís- ticas del golpeteo con la finalidad de implementar un algoritmo que mantenga su rendimiento incluso cuando se incremente la data a analizar y contribuya a la telemedicina. Se trabajó con una base de datos que incluye videos de voluntarios sanos y pacientes con la enfermedad de Parkinson. Cada video es segmentado de forma manual y automática utilizando un algotimo basado en MediaPipe Hands con la finalidad de obtener una señal que represente el golpeteo de dedos del paciente. A partir de la señal, se extrajeron cuatro métricas tanto de la amplitud como del periodo: (1) coeficiente de variación, (2) mediana, (3) media y (4) desviación estándar. Para la clasificación, se aplicó K-means con una clusterización de valor 4 que involucra los niveles de gravedad comprendidos en el rango de 0-3. Finalmente, se compara la clasificación de K- means con los puntajes asignados por médicos de la Universidad de Rochester para calcular la correlación. Tras cumplir con el desarrollo de las diversas etapas propuestas en la metodología de solución, se obtuvieron valores de 82% y 88% para diferentes conjuntos de datos. A partir de los resultados, se concluye que el algoritmo implementado permite la automatización del análisis del golpeteo de dedos a través de técnicas de visión por computadora y algoritmos de clasificación.
  • Thumbnail Image
    Item
    Caracterización de movimientos repetitivos mediante algoritmos de procesamiento de imágenes
    (Pontificia Universidad Católica del Perú, 2023-09-21) Zumaeta Cuchca, Katherin Mileny; Romero Gutiérrez, Stefano Enrique
    La evaluación de los síntomas de la enfermedad de Parkinson tiene un carácter subjetivo ya que se basa en la experiencia y la agudeza visual del médico tratante, quién realiza una puntuación de 0 a 4 según la Escala Unificada para la Evaluación de la Enfermedad de Parkinson Patrocinada por la Sociedad de Trastornos del Movimiento (MDS-UPDRS, por sus siglas en inglés). El presente trabajo de tesis tiene como objetivo evaluar dos algoritmos de flujo óptico y segmentación de imágenes para cuantificar el golpeteo de dedos y movimiento con las manos, basado en la MDS-UPDRS. El punto de partida para cumplir este objetivo fue el diseño de un protocolo de adquisición de videos, el cual se implementó con 30 participantes sanos que realizaron tres secuencias de cada movimiento. Posteriormente, se realizó el procesamiento de datos con los algoritmos propuestos y se obtuvieron las señales de frecuencia y amplitud. Finalmente se hizo el análisis estadístico. Los resultados muestran que los algoritmos fueron codificados con éxito y se apreciaron los cambios de amplitud y frecuencia de los movimientos repetitivos. Finalmente, se discutieron los resultados basándose en mejoras enfocadas en el protocolo de adquisición de datos que permitan su implementación en un ambiente clínico para contribuir al diagnóstico de pacientes que padecen párkinson.