3. Licenciatura
Permanent URI for this communityhttp://98.81.228.127/handle/20.500.12404/3
Tesis de todas las facultades
Browse
3 results
Search Results
Item Herramienta para el análisis de diversidad conformacional en estructuras de proteínas repetidas(Pontificia Universidad Católica del Perú, 2024-08-16) Tunque Cahui, Ronaldo Romario; Hirsh Martinez, LaylaLas proteínas repetidas son conocidas por la característica particular de presentar repeticiones en su estructura y por ser un tipo de proteínas que se encuentran en organismos unicelulares y pluricelulares, por ejemplo, el organismo humano, las bacterias, entre otros. Desde hace ya algunos años, las proteínas repetidas han cobrado interés debido a que están relacionadas a enfermedades humanas y a aplicaciones en ingeniería. Además, esta clase de proteínas presenta una fuente fundamental de información para explicar la diversidad estructural contemporánea. Sin embargo, la comprensión de las proteínas repetidas con respecto a sus estructuras, funciones y evolución, representa un desafío considerable. Aunque desde un punto de vista estructural, es posible analizar las diferentes estructuras que una proteína cualquiera presenta en su estado nativo (análisis de diversidad conformacional). Una proteína cualquiera, dependiendo del entorno, puede adoptar una u otra conformación diferente. A este conjunto de estructuras alternativas se le denomina estado nativo de la proteína y los cambios de una conformación a otra se conocen como diversidad conformacional y es un ´ concepto clave para la comprensión de las diversas propiedades esenciales de la proteína como su función biológica, el origen de nuevas funciones, entre otras. No obstante, hasta el día de hoy, no hay registro ni publicación alguna que explique algún estudio de diversidad conformacional aplicado, específicamente, a las proteínas repetidas. Por ello, se busca plantear un método y una herramienta bioinformática que permita calcular, evaluar y visualizar la información de diversidad conformacional de este tipo de proteínas. Con la finalidad de que los investigadores relacionados al área de bioinformática y/o afines tengan a su disposición una herramienta de acceso libre que les permita evaluar las características de las proteínas repetidas y, a la vez, entender un poco más sobre la estructura, función y evolución de las mismas.Item Implementación de una plataforma digital para el registro, procesamiento y categorización de datos relacionados a los perfiles de los sujetos de prueba, para estudios de metagenómica intestinal humana(Pontificia Universidad Católica del Perú, 2023-03-10) Carbajal Serrano, César Adrián; Hirsh Martinez, LaylaLa metagenómica es la ciencia que emplea el análisis genético directo de una población de microorganismos contenidos en una muestra ambiental, mediante la extracción directa y clonación de ADN (Thomas, Gilbert & Meyer, 2012; Singh, et. al., 2009). Uno de los focos de la metagenómica es el microbioma intestinal humano, debido a que desempeña un papel clave en la salud (Davenport et. al., 2017; Sekirov, 2010). En los estudios de metagenómica intestinal, se realiza un muestreo de las heces de los sujetos de prueba (Aagaard et. al., 2013), se secuencian los microorganismos que se encuentran en esta, se procesa esta información mediante herramientas bioinformáticas y finalmente los investigadores analizan los resultados obtenidos (Lloyd-Price et. al., 2016). Previamente al proceso de muestreo, se requiere recopilar los metadatos de la muestra (Kunin et. al., 2008), los cuales son datos de los sujetos de prueba que influyen en su microbioma intestinal. Actualmente, estos metadatos se recopilan y procesan de una forma manual, a modo de formulario físico, se almacenan de forma incompleta y no estandarizada, y requieren mucho tiempo para ser procesados y categorizados. Es por ello que, en el presente trabajo de fin de carrera, se busca proponer una herramienta digital que permita la recopilación, procesamiento y categorización de los datos de los sujetos de prueba. Estos datos, los cuales son de distintos tipos, serán recopilados de una manera uniforme en una base de datos, de tal manera que se preserven en el tiempo y los investigadores puedan reutilizar esta información en futuros estudios, sin tener que recurrir a volver a realizar el costoso proceso de secuenciación. Con el fin de resolver este problema, se diseñó una base de datos que almacene los datos de los sujetos de prueba, de una manera estandarizada. Utilizando las entidades y las relaciones identificadas en la revisión de la literatura, se pudo plantear un diseño de base de datos que permita la recopilación de los datos de los participantes. En ese mismo sentido, usando la base de datos planteada, se implementó una plataforma digital que permite gestionar estudios de metagenómica y recopilar los datos de sus participantes. De esta manera, se pueden almacenar los metadatos de las muestras a secuenciar de una manera digital, permitiendo a los investigadores revisar estos datos en un futuro. Finalmente, se identificó las funcionalidades necesarias para el procesamiento de los datos de los sujetos de prueba. Estas funcionalidades fueron implementadas en la plataforma digital, para poder permitir a los investigadores analizar estos datos de una manera rápida y sencilla.Item Desarrollo de una herramienta para la predicción de estructuras terciarias de proteínas repetidas a partir de su estructura primaria(Pontificia Universidad Católica del Perú, 2023-02-06) Palomino Chahua, Solange Estrella; Hirsh Martinez, LaylaLa predicción de estructuras de proteínas es uno de los retos más importantes de la biología y la bioinformática (Lopes et al., 2019). Esta última es el campo de investigación que se apoya en la computación para analizar la información relacionada a las macromoléculas biológicas como las proteínas (Xiong, 2006). Las proteínas son moléculas esenciales compuestas por varios cientos o miles de aminoácidos configurados de forma secuencial, lo cual se conoce como estructura primaria (Xiong, 2006). Esta organización se va plegando espontáneamente hasta resultar en una conformación tridimensional diferente una de otra denominada como estructura terciaria, la cual es fundamental para determinar la función de la proteína y realizarla de forma exitosa (Xiong, 2006). Hay muchas razones por las cuales la predicción de estructuras proteicas sigue siendo una problemática vigente. Una de ellas es que, actualmente, es mucho más complicado obtener estructuras tridimensionales que secuencias de proteínas, por lo cual existe una brecha cuantitativa entre ellas, que crece exponencialmente (Deng et al., 2018). Además, la determinación de las estructuras tridimensionales sigue siendo una tarea que requiere muchos recursos económicos, computacionales y algunos no renovables, como el tiempo (Lopes et al., 2019). En adición, se ha evidenciado una significativa ausencia de criterios de usabilidad en el desarrollo de muchas herramientas informáticas relacionadas a la predicción de las proteínas (Paixão-Cortes et al., 2018). Esto conlleva al gasto innecesario de tiempo y esfuerzo de los usuarios que deben interactuar con interfaces difíciles de entender (Bolchini et al., 2009). Esta situación se replica en proteínas específicas como las proteínas repetidas, las cuales son grupos de familias de proteínas que tienen propiedades particulares como la existencia de unidades de repetición en su estructura (Hirsh et al., 2016). Estas proteínas son importantes dado que se sabe que se relacionan con muchas enfermedades humanas en su proceso de diagnóstico y porque dan pie al desarrollo de nueva medicina (Burley et al., 2021; Kajava & Steven, 2006). No obstante, debido a su complejidad, aún se requieren esfuerzos para estudiarlas en temas como la predicción de sus estructuras (MSCA & RISE, 2018). Por todo ello, este proyecto de tesis busca proponer el desarrollo de una herramienta dedicada a la predicción de estructuras terciarias de proteínas repetidas a partir de sus estructuras primarias, la cual deberá cumplir con lineamientos de usabilidad. Se espera responder a la problemática planteando una plataforma web que sea amigable para el usuario, que permita obtener resultados en tiempos aceptables y que utilice un algoritmo de predicción que aplique inteligencia artificial y sea eficaz respecto a la evaluación de alineamientos estructurales. En primera instancia, se evaluarán distintos algoritmos de predicción de proteínas en general, para luego seleccionar uno y adaptarlo a los requerimientos de los especialistas en proteínas repetidas. Con ello, se crearán servicios y rutinas de ejecución que permitirán predecir estructuras terciarias de proteínas a partir de diversos tipos de datos de entrada. Posteriormente, se construirá la interfaz gráfica de la herramienta, partiendo de la definición de estándares y el desarrollo de un prototipo de alta fidelidad. Finalmente, se integrarán ambos componentes para conformar la herramienta completa, la cual será valorada a través de diversas pruebas funcionales y una evaluación de usabilidad. Cabe mencionar que esta última se realizará utilizando una herramienta enfocada a la evaluación de herramientas bioinformáticas.