3. Licenciatura

Permanent URI for this communityhttp://98.81.228.127/handle/20.500.12404/3

Tesis de todas las facultades

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Modelo de red neuronal convolucional para la clasificación de tipos de nubes en imágenes de webcam
    (Pontificia Universidad Católica del Perú, 2025-01-14) Andonaire Tuesta, Mario Alejandro; Beltrán Castañón, César Armando; Villanueva Talavera, Edwin Rafael
    La presente investigación aborda la problemática de la clasificación manual de tipos de nubes en estaciones meteorológicas del Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI), un proceso sujeto a errores y demandante de tiempo. El estudio justifica su relevancia destacando la importancia de la observación precisa de nubes en la meteorología y cómo la automatización mediante una herramienta de clasificación basada en redes neuronales convolucionales podría optimizar este procedimiento. Este trabajo se enmarca dentro del proyecto Meteo-Huascarán, en colaboración con el SENAMHI y el grupo de investigación IAPUCP. El método empleado consiste en el entrenamiento de un modelo de red neuronal convolucional, utilizando aprendizaje supervisado para clasificar automáticamente los tipos de nubes a partir de imágenes tomadas desde tierra. La investigación contempla la preparación de una base de datos representativa, la implementación de tres arquitecturas de redes neuronales y la selección de la más adecuada mediante una evaluación comparativa. Además, el desarrollo una interfaz web para mostrar el funcionamiento del modelo. Los resultados muestran un avance en la automatización de la clasificación de tipos de nubes, seleccionando la arquitectura Inception v3 como la más adecuada para el proyecto. La implementación de la interfaz web facilita la interacción con el modelo, permitiendo la carga de imágenes de nubes y obteniendo la clasificación correspondiente de forma automática. Este trabajo contribuye a la automatización del proceso de clasificación de tipos de nubes en el SENAMHI, proponiendo una solución tecnológica que reduce la dependencia de observadores humanos y mejora la eficiencia y precisión en la observación meteorológica. La implementación de este modelo representa un paso adelante hacia la modernización y adaptación a las necesidades futuras en el campo de la meteorología en el Perú.
  • Thumbnail Image
    Item
    Desarrollo de un Framework para la identificación del nivel de complejidad de texto para el entrenamiento de chatbots basado en Machine Learning
    (Pontificia Universidad Católica del Perú, 2022-03-21) Matos Rios, Hans; Beltrán Castañón, César Armando
    La generación de diálogo implica diseñar un programa para generar una conversación natural, esto requiere desarrollar algoritmos que puedan conversar con un ser humano y otro programa de manera coherente y fluida. Desarrollar una conversación también depende del contexto y conocimiento del interlocutor, lo cual nos lleva a definir la existencia de niveles de complejidad conversacional, la cual se refiere a determinar que tan fácil o difícil de leer es un texto. En este aspecto, especialmente para el idioma español, no existe una herramienta que tenga un módulo propio que le permita clasificar textos en español por su complejidad textual. En el presente trabajo de fin de carrera se realiza el desarrollo de un módulo en el lenguaje de programación Python, el cual funciona como un Framework para identificar la complejidad textual de textos en español usando técnicas de Machine Learning. Para ello, en primer lugar, se implementaron 48 métricas de análisis de complejidad textual basadas en Coh-Metrix usando el lenguaje de programación Python. Dichas métricas convierten textos en español en datos numéricos con los cuales se entrenaron distintos modelos de Machine Learning, con el motivo de obtener el mejor modelo a utilizar con el Framework desarrollado, siendo este capaz de utilizar un modelo personalizado provisto por el usuario. Para ello, se necesitó obtener un corpus de 183 textos en español para realizar dicho entrenamiento, el cual fue obtenido al descargar textos educativos de nivel primaria y secundaria. Por último, se entrenó un chatbot con los textos obtenidos para el corpus, cuyas respuestas generadas fueron analizados con el Framework previamente desarrollado, identificando que el nivel de complejidad de dichas respuestas correspondía al nivel de los textos con los cuales el chatbot fue entrenado. En conclusión, en el presente proyecto de investigación se desarrolla un módulo de Python que funciona como un Framework, el cual es capaz de identificar la complejidad textual de textos en español, ya sea con el mejor modelo de Machine Learning utilizado en el presente proyecto o utilizando uno provisto por el usuario de la herramienta.
  • Thumbnail Image
    Item
    Implementación de un algoritmo de aprendizaje profundo basado en eventos para el problema de predicción de movimiento bursátil
    (Pontificia Universidad Católica del Perú, 2021-11-30) Bustamante Arce, Jaime Diego; Beltrán Castañón, César Armando
    La predicción de precios bursátiles, acciones e índices siempre ha sido un tema de interés en el mundo financiero, no solo por su capacidad de originar grandes rentabilidades en poco tiempo, sino también por su volatilidad y complejidad. Así, desde que los mercados bursátiles fueron concebidos diferentes investigadores en variadas áreas han tratado de “vencerlo” prediciendo su comportamiento, como el índice S&P 500 que lista la cotización de las 500 corporaciones más líquidas de la Bolsa de New York. Uno de los enfoques es el fundamentalista, que busca predecirlo de acuerdo a las noticias en los medios de las empresas listadas en la Bolsa de Valores. Desde el lado informático, diversas técnicas han venido siendo aplicadas para realizar esta predicción como estadísticas y las clásicas herramientas de aprendizaje de máquina. Sin embargo, con el creciente aumento de volumen de información, se hace necesario aplicar técnicas que consigan lidiar con esta información no estructurada. Técnicas como redes profundas recurrentes (LSTM), se han mostrado ad-hoc para el manejo de información temporal, debido a que tienen de capacidad de memorizar hechos pasados, que persisten en el tiempo. En el presente trabajo se propone una metodología y conjunto de redes neuronales profundas para la predicción de movimiento bursátil a partir de eventos y noticias corporativas. Para ello no solo se considera la contextualización de palabras, sino también sus relaciones y composición semántica, estructura e historia para la predicción del índice S&P 500. En resumen, el presente proyecto obtiene resultados exitosos puesto que sobrepasan a los del estado del arte. Así, el conjunto de modelos neuronales propuestos puede ser usados como apoyo en la decisión de inversión diaria en el índice S&P 500.
  • Thumbnail Image
    Item
    Caracterización y clasificación automática de ríos en imágenes satelitales
    (Pontificia Universidad Católica del Perú, 2017-06-16) Brown Manrique, Kevin; Beltrán Castañón, César Armando
    En los últimos años, el fenómeno conocido como cambio climático se está volviendo cada vez más notorio. Como resultado de este fenómeno, uno de los sectores que se verá más afectado será el de los recursos hídricos debido al impacto que se tendrá sobre el ciclo hidrológico y en los sistemas de gestión de agua, y a través de estos, en los sistemas socioeconómicos. Uno de los impactos conocidos es el conjunto de modificaciones en los patrones de precipitación y caudal de los ríos que afectarán a todos sus usuarios. Los caudales de ríos se forman por sedimentos que han sido y están siendo transportados por agua que fluye y por lo general se pueden clasificar en 4 formas básicas: rectos, meandros, trenzados y anastomosados. Es importante el tener reconocidos los distintos ríos y para ello no basta con conocer su localización sino además tener mapeadas las características de estos según su canal aluvial. Uno de los métodos tradicionales para caracterizar la morfología de un río (anchura, sinuosidad, características de inundación, etc.) es a través de trabajo de campo, que es costoso y demanda tiempo. Estos métodos no sólo consumen tiempo, sino que además, son extremadamente difíciles de llevar a cabo debido a que están sujetos a factores como inundaciones, mareas y tormentas que pueden hacer el lugar inaccesible y peligroso para recolectar información. El presente proyecto de fin de carrera propone una solución ante el problema de la dificultad y alto costo que supone la realización del trabajo de campo que permita caracterizar la morfología de un río. La solución planteada es una nueva técnica computacional para la caracterización automática de la morfología de los ríos, Dimensión Fractal Multi-escala, el cual aprovecha las características fractales de formación de elementos naturales como los ríos. El proyecto inicia con un proceso de limpieza de ruido a los datos de entrada que son esqueletos de ríos, para luego, por cada uno, aplicar el método de Crossing Number para obtener la multiplicidad de canal. Seguidamente, se elaborará una Curva Fractal aplicando el método de Dimensión Fractal Multiescala y de la curva obtenida se extraerán puntos de interés para generar un vector de características necesario para la clasificación. A continuación, se entrenará un clasificador empleando los vectores de características para generar un modelo predictivo. Finalmente, el modelo será evaluado mediante la clasificación de un nuevo esqueleto de río.