Matemáticas (Dr.)
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12404/1572
Browse
2 results
Search Results
Item Estratificación del espacio de foliaciones holomorfas de grado 4 en el plano proyectivo complejo(Pontificia Universidad Católica del Perú, 2021-08-11) Medina García de Correa, Nélida Salomé; Puchuri Medina, LilianaLa clasificación de las foliaciones holomorfas en P2C es un problema parcialmente resuelto. Cano et al describen las de grados 0, 1 en PnC y Cerveau et al las de grado 2 en P2C, con una sola singularidad. Mumford y Fogarty demuestran que restringiendo la acción lineal de un grupo reductivo G a los puntos semiestables de una variedad proyectiva X se obtiene un cociente bueno. El objetivo de este trabajo es estratificar el espacio de foliaciones holomorfas de grado 4 en el plano proyectivo complejo, denotado por F4. Para ello, estudiamos la acción lineal por cambio de coordenadas del grupo de automorfismos de P2C en F4 en el sentido de la Teoría de invariantes geométricos. Aplicando resultados y métodos desarrollados por Hesselink, Kirwan y Alcántara construimos una estratificación de las foliaciones inestables de F4 mediante subvariedades algebraicas no-singulares, irreducibles, localmente cerradas. Caracterizamos la foliación genérica de los estratos con singularidades aisladas según el número de Milnor y multiplicidad de un punto sigular común, primer jet no trivial, existencia de recta invariante, y calculamos la dimensión del estrato. Demostramos que el conjunto de foliaciones inestables de F4 tiene dos componentes irreducibles. Obtenemos foliaciones de F4 con un único punto singular.Item Clasificación analítica de ciertos tipos de foliaciones cuspidales (C3,0)(Pontificia Universidad Católica del Perú, 2014-10-24) Neciosup Puican, Hernán; Fernández Sánchez, Percy; Mozo Fernández, JorgeSin duda, uno de los problemas ubicuos de las matemáticas es el de la clasificación de objetos, una vez definido un criterio de equivalencia. Así pues, se clasifican estructuras algebraicas, objetos geométricos, o ecuaciones, siguiendo criterios de isomorfismo, conservación de ciertas estructuras geométricas, o relación entre los espacios de soluciones. Uno de los objetivos de estudiar estas clasificaciones es hallar un representante “sencillo” a cada una de las clases de equivalencia, cuyas propiedades, fáciles de estudiar, permiten deducir por analogía propiedades de los objetos más generales. Mencionamos algunos ejemplos conocidos. 1. Toda matriz cuadrada es equivalente a una matriz en forma de Jordan. Así deducimos por ejemplo, la descomposición de un endomorfismo en su parte semisimple y nilpotente. 2. Todo grupo abeliano finito es isomorfo a una suma directa de grupos cíclicos. Un problema de equivalencia similar para grupos simples finito ocupó la labor de numerosos matemáticos durante décadas. 3. Toda superficie topológica compacta es homeomorfa a uno de los siguientes modelos: una esfera, una suma conexa de toros, o una suma conexa de un plano proyectivo y una de las anteriores. Problemas análogos en dimensión superior han resultado mucho más difíciles de abordar. Así, la célebre conjetura de Poincaré está relacionada con la clasificación de 3-variedades topológicas compactas. En particular, se puede mostrar que si una tal variedad tiene la homología de una 3-esfera S³, es homeomorfo a ella. La importancia de resolver este tipo de problemas muestra que la resolución de dicha conjetura en cualquier dimensión ha sido merecedora de tres Medallas Fields (Stephen Smale en 1966, Michael Freedman en 1986 y Grigori Perelman en 2006). La presente memoria se enmarca dentro de los problemas de clasificación. Más específicamente, nos proponemos estudiar la clasificación analítica, mediante la holonomía proyectiva, de ciertos tipos de foliaciones holomorfas singulares de codimension uno en (C³, 0). En concreto, el estudio que presentamos en esta tesis se escoge con la finalidad de establecer, hasta qué punto, una técnica sencilla, nos permite clasificar analíticamente las foliaciones cuspidales en (C³, 0). De este modo, el desarrollo de esta tesis se fundamenta en una interrogante fundamental que da sentido y forma a todos nuestros planteamientos. Esta interrogante es el siguiente ¿hasta qué punto la técnica de clasificación analítica usada por R. Moussu [Mou2], D. Cerveau y R. Moussu [CMou], R. Meziani [Me], M.Berthier, R. Meziani y P. Sad [BMS], entre otros, nos permite clasificar analíticamente las foliaciones cuspidales en (C³, 0)?. Esta pregunta, se presta a múltiples respuestas y a variados planteamientos, pero en el caso que nos ocupa cabe destacar un planteamiento que posteriormente pasaremos a describir