Matemáticas (Dr.)

Permanent URI for this collectionhttps://hdl.handle.net/20.500.12404/1572

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Curva polar de una foliación asociada a sus raíces aproximadas
    (Pontificia Universidad Católica del Perú, 2018-10-05) Saravia Molina, Nancy Edith; Fernández Sánchez, Percy; García Barroso, Evelia
    Las foliaciones no dicríticas de segundo tipo fueron caracterizadas por Mattei - Salem [Ma-Sa] en término de su multiplicidad y de su unión de separatrices. En este trabajo de tesis, damos otra caracterización a las foliaciones no dicríticas de segundo tipo con el polígono de Newton de la foliación y el de su unión de separatrices. De otro lado, Loray [Lo] enuncia una caracterización para un tipo de foliaciones con singularidades cuspidales que tienen la misma resolución que su unión de separatrices, sin embargo Fernández, Mozo y Neciosup [F-Mo-N] encuentran una impresición en la caracterización debido a que la condición es necesaria pero no suficiente. Lo que hacemos en este trabajo es caracterizar a dicha familia de foliaciones cuando son de segundo tipo y damos condiciones necesarias y suficientes cuando son de tipo curva generalizada en términos de su orden pesado. Finalmente, generalizamos el resultado de García Barroso y Gwozdziewicz [GB-G1] a foliaciones, esto es, descomponemos la curva polar de una foliación curva generalizada asociada a sus raíces aproximadas. Dicha descomposición viene expresada en función del tipo topológico de la separatriz de la foliación.