Browsing by Author "Neyra Pérez, Juan Manuel"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Diseño e implementación de las funciones de agarre y levante en un brazo Kinova usando señales EEG y Deep Learning(Pontificia Universidad Católica del Perú, 2020-09-24) Neyra Pérez, Juan Manuel; Villota Cerna, Elizabeth RoxanaMiles de personas en el mundo son afectadas por enfermedades causantes de parálisis tales como esclerosis lateral amiotrófica, lesiones en la médula espinal y distrofia muscular. En los últimos años, investigadores han buscado desarrollar soluciones tecnológicas para asistir a estos pacientes. En el 2012, una mujer con tetraplejia, causada por un paro cerebral, fue capaz de acercar una botella a su boca y beber de ella, utilizando señales EEG invasivas [1]. Recientemente, en el 2016, ahora mediante sensores EEG no invasivos, se realizaron pruebas en 13 sujetos sanos para mover un brazo robot en dos dimensiones [2]. Buscando colaborar en el desarrollo de robots asistenciales, el presente trabajo propone el diseño e implementación de las funciones de 'agarre' y 'levante' en el brazo robot Kinova, donde las señales de activación provendrán de señales EEG y el algoritmo de traducción estará basados en modelos de deep learning. Los modelos de deep learning mencionados serán basados en la solución propuesta por Alex Barachant y Rafael Cycon para la clasificación de señales EEG [3]. El dataset que se utilizará para el entrenamiento se toma del repositorio WAY-EEG-GAL financiado por la unión europea [4]. A pesar de que las señales EEG corresponden a movimientos físicos reales, los cuales no pueden ser realizados por los pacientes con las enfermedades antes mencionadas, este trabajo busca brindar un aporte a la literatura médica e ingenieril y al avance de las aplicaciones de interfaz cerebro-computador. Adicionalmente, se busca proponer el método para evaluar el desempeño en una prueba experimental del algoritmo referido, lo cual no se ha abordado en la literatura presente hasta el momento.