Show simple item record

dc.contributor.advisorFernández Pilco, Percy
dc.contributor.authorCrespo Guerrero, Gloria Solveyes_ES
dc.date.accessioned2014-02-25T17:24:32Zes_ES
dc.date.available2014-02-25T17:24:32Zes_ES
dc.date.created2009es_ES
dc.date.issued2014-02-25es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12404/5115
dc.description.abstractDada una 1-forma analítica real w = a(x,y)dx + b(x,y)dy. ¿Cómo reconocer si la ecuación w=0 posee una integral primera?. El Teorema del Centro nos da ciertas condiciones sobre la singularidad 0 E R cuadrado para que la ecuación Pfaff w=0 posea una integral primera analítica. Lo interesante en la demostración de este teorema (realizada por Robert Moussu en [11]) es como argumentos de la teoría de variable compleja son utilizados para demostrar este teorema de naturaleza real. Lo primero que hacemos es considerar la ecuación complejificada de w=0, esto es, consideramos los puntos (x,y) en el plano complejo C cuadrado. Como estamos interesados en la geometría de las soluciones (comportamiento cualitativo) surge la necesidad de la teoría de foliaciones. Pues, el complejificado de w induce una foliación singular de dimensión compleja 1, cuyas hojas localmente son las curvas solución del campo holomorfo (dual de la 1-forma holomorfa). El propósito siguiente es estudiar esta foliación asociada al campo holomorfo, pero lastimosamente no tenemos mucha información al respecto, sin embargo, mediante la técnica del Blow-up de la foliación en el punto 0 E C cuadrado, logramos obtener suficiente información acerca de esta foliación. Información que junto con el Grupo de Holonomía de una hoja y el Teorema de Mattei-Moussu nos conducen a la conclusión del teorema, la existencia de una integral primera para el campo holomorfo. Finalmente se sigue que la integral primera buscada para el campo analítico real es la parte real de la integral primera obtenida del campo holomorfo.es_ES
dc.description.uriTesises_ES
dc.language.isospaes_ES
dc.publisherPontificia Universidad Católica del Perúes_ES
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Perú*
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/*
dc.sourcePontificia Universidad Católica del Perúes_ES
dc.sourceRepositorio de Tesis - PUCPes_ES
dc.subjectEcuaciones diferenciales ordinariases_ES
dc.subjectTeorema del centroes_ES
dc.titleTeorema del centroes_ES
dc.typeinfo:eu-repo/semantics/masterThesises_ES
thesis.degree.nameMagíster en Matemáticases_ES
thesis.degree.levelMaestríaes_ES
thesis.degree.grantorPontificia Universidad Católica del Perú. Escuela de Posgradoes_ES
thesis.degree.disciplineMatemáticases_ES
renati.discipline541137es_ES
renati.levelhttps://purl.org/pe-repo/renati/level#maestroes_ES
renati.typehttp://purl.org/pe-repo/renati/type#tesises_ES
dc.publisher.countryPEes_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 2.5 Perú
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 2.5 Perú