dc.contributor.advisor | Negrón Naldos, Luis Alfredo | |
dc.contributor.author | Olivera Flores, Hugo | |
dc.contributor.author | Martinez Toledo, Ilich Daniel | |
dc.contributor.author | Obispo Oscco, Juan Carlos | |
dc.date.accessioned | 2023-11-14T16:43:08Z | |
dc.date.available | 2023-11-14T16:43:08Z | |
dc.date.created | 2023 | |
dc.date.issued | 2023-11-14 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12404/26422 | |
dc.description.abstract | Las operaciones industriales, de giros de manufactura y servicio, se han visto
impactadas por la digitalización y el enfoque financiero ecosostenibles que demanda el
cuidado global. Considerando que se esté ingresando a la recopilación y análisis de
macrodatos (estructurados y no estructurados). Actualmente, no solo son buenas prácticas de
empresas retail, bancos y seguros, sino que ya son tendencia en el sector manufacturero, pero
su única limitante es la inversión en la infraestructura.
La presente investigación busca conocer el vínculo entre la cadena de suministro de la
economía circular, big data y el desempeño operacional de la cadena de suministro en el
sector manufacturero peruano. La investigación tuvo un enfoque cuantitativo, diseño
observacional y alcance es relacional-explicativo.
Para probar el marco propuesto se tomó un enfoque de análisis factorial confirmatorio
(AFC) utilizando datos recopilados a través de una encuesta con 48 preguntas que involucró a
77 empresas, determinando que existe significancia que corroboran las hipótesis que explican
la correlación entre big data y la economía circular con el desempeño operacional a un nivel
de confiabilidad del 95%. Los resultados de Alfa (fiabilidad) y Omega (fiabilidad compuesta)
son mayor a 0.7. Asimismo, en la varianza extraída todos los constructos presentaron valores
mayores a 0.5. En el análisis del modelo estructural (SEM) se presentó un buen ajuste, debido
valor de chi-cuadrado entre los grados de libertad fue de 1.474, siendo menor a 3. Es
importante señalar, en la medida que este modelo se implemente dentro de la manufactura
mejorará la flexibilidad para cambiar el volumen de fabricación y tiempo de entrega a través
de obtener conocimientos y apoyar su proceso de toma de decisiones. Esto implica que los
directivos deben prestar suficiente atención a la infraestructura informática y la integración
con otros sistemas de manera innovadora, en tiempo real y más eficiente, permitiendo la
interacción de todas las áreas para un mejor análisis de los datos. | es_ES |
dc.description.abstract | Industrial manufacturing and service operations went hit by digitization and the eco-
sustainable financial approach that global care demands. The collection and analysis of big
data (structured and unstructured) are being entered in different industries, where there must
be a perfect pairing between the infrastructure and qualified personnel for decision-making
based on the data and thus achieve that the companies be sustainable. Currently, they are not
only good practices for retail, banking, and insurance companies, but they are already
trending in the manufacturing sector, but their only limitation is an investment in
infrastructure. The investigation seeks to know the link between the supply chain of the
circular economy, big data, and the operational performance of the supply chain in the
peruviana manufacturing sector. The research had a quantitative approach, observational
design, and scope are relational-explanatory. To test the proposed framework, a confirmatory
factor analysis (CFA) approach was taken using data collected through a survey with 48
questions that involved 77 companies, determining that there is a significance that
corroborates the hypotheses that explain the causal relationships between big data and the
circular economy with an operational performance at a reliability level of 95%. The results of
Alpha (reliability) and Omega (composite reliability) are values greater than 0.7. Likewise, in
the variance extracted, all the constructs presented values greater than 0.5. It was summited a
fine adjustment on the structural model analysis (SEM) due to the chi-square value between
the degrees of freedom being 1.474, being less than 3. It's important to highlight that, as long
as this model in the manufacturing process is implemented, it will improve the flexibility to
change manufacturing volume and delivery time by gaining knowledge and supporting their
decision-making process. It implies that managers must pay sufficient attention to the IT
infrastructure and the integration with other systems in an innovative, real-time, and more
efficient way, allowing the interaction of all areas for better data analysis. | es_ES |
dc.language.iso | spa | es_ES |
dc.publisher | Pontificia Universidad Católica del Perú | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ | * |
dc.subject | Industrias manufactureras--Perú | es_ES |
dc.subject | Economía ambiental | es_ES |
dc.subject | Big data | es_ES |
dc.title | Influencia de big data y economía circular en el desempeño operacional de la cadena de suministro del sector manufactura peruano | es_ES |
dc.type | info:eu-repo/semantics/masterThesis | es_ES |
thesis.degree.name | Maestro en Dirección de Operaciones Productivas | es_ES |
thesis.degree.level | Maestría | es_ES |
thesis.degree.grantor | Pontificia Universidad Católica del Perú. CENTRUM | es_ES |
thesis.degree.discipline | Dirección de Operaciones Productivas | es_ES |
renati.advisor.dni | 10788917 | |
renati.advisor.orcid | https://orcid.org/0000-0003-1328-0323 | es_ES |
renati.author.dni | 44111063 | |
renati.author.dni | 44592130 | |
renati.author.dni | 41301771 | |
renati.discipline | 722107 | es_ES |
renati.juror | O ́Brien Cáceres, Juan | es_ES |
renati.juror | Cachay Silva, Gonzalo Javier | es_ES |
renati.juror | Negrón Naldos, Luis Alfredo | es_ES |
renati.level | https://purl.org/pe-repo/renati/level#maestro | es_ES |
renati.type | https://purl.org/pe-repo/renati/type#tesis | es_ES |
dc.publisher.country | PE | es_ES |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#5.02.04 | es_ES |