Show simple item record

dc.contributor.advisorNegron Naldos, Luis Alfredo
dc.contributor.authorMendoza Bernedo, Juan Francisco
dc.contributor.authorSaldaña Bustamante, Fernando Jesus
dc.contributor.authorVivanco Yovera, Rocio Susana
dc.date.accessioned2021-11-17T15:59:46Z
dc.date.available2021-11-17T15:59:46Z
dc.date.created2021
dc.date.issued2021-11-17es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12404/20918
dc.description.abstractLa presente investigación tiene como objetivo utilizar la tecnología basada en machine learning, para la identificación de obras urbanas en la ciudad de Lima. La posibilidad de extraer y analizar información de medios sociales mediante el análisis de sentimientos, también conocido como minería de opinión (opinion mining), es, para Liu (2015), un campo de estudio que se centra en analizar las opiniones que expresan o implican sentimientos positivos o negativos. Para abordar esta problemática se propone un modelo para la clasificación de mensajes de Twitter de forma automática, a fin de comprender cuál es la intención que tiene el usuario cuando publica un mensaje sobre las obras urbanas en la ciudad de Lima, en especial pistas, parques y veredas, además de identificar la ubicación de estas obras en sus diferentes distritos. La investigación permitió reconocer patrones de comportamiento que son de gran importancia para la Municipalidad de Lima, debido a que, al tener identificada la problemática de las obras urbanas por distritos, podrá plantear estrategias para priorizar obras de manera anticipada y así poder planificarlas para su ejecución en el periodo municipal. Los resultados obtenidos utilizando el algoritmo de clasificación supervisada support vector machine (SVM) muestran valores de aciertos del modelo de alrededor del 78% en análisis de sentimientos. Se realizó una primera clasificación de distritos que necesitan urgentemente de obras urbanas, disgregada en tres tipos: parques, pistas y veredas. Los resultados generales del modelo son buenos en comparación con las investigaciones de otros autores como Aiala et al. (2017).es_ES
dc.description.abstractThis research is called "Identification of urban works for the city of Lima through the use of tools based on Machine Learning", it has as goal the use of technology based on Machine Learning for the identification of urban works in the city of Lima. The possibility of extracting and analyzing information from different social media through sentiment analysis, also known as opinion mining; that for Liu (2015), is a field of study that focuses mainly on analyzing the opinions that express or imply positive or negative feelings. To address this topic, a model is proposed for the automatic classification of Twitter messages to try to understand the intention of the user when he publishes a message about urban works in the city of Lima, especially roads, parks, and sidewalks, additionally it is necessary to identify the location of urban works in the districts of Lima. This research allowed to identify patterns of behavior that are of great importance for Lima Municipality, because by having identified the problem of urban works by districts, it will allow them to propose strategies that allow prioritizing the districts with demand for urban works in advance and be able to plan them for execution in the governance period. The results obtained using the Support Vector Machine (SVM) supervised classification algorithm, show us values of correctness of the model around 78% in sentiment analysis. A first classification of districts was made with the urgently needs urban works and has been classified into the three types of urban works: parks, tracks, sidewalks. The general results of the model are good when comparing the research of other authors such as Aiala et al. (2017).es_ES
dc.language.isospaes_ES
dc.publisherPontificia Universidad Católica del Perúes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/*
dc.subjectInteligencia artificiales_ES
dc.subjectIndustria de la construcción--Innovaciones--Limaes_ES
dc.titleIdentificación de obras urbanas para la ciudad de Lima a través del uso de herramientas basadas en Machine Learninges_ES
dc.typeinfo:eu-repo/semantics/masterThesises_ES
thesis.degree.nameMaestro en Gerencia de Tecnologías de Informaciónes_ES
thesis.degree.levelMaestríaes_ES
thesis.degree.grantorPontificia Universidad Católica del Perú. CENTRUMes_ES
thesis.degree.disciplineGerencia de Tecnologías de Informaciónes_ES
renati.advisor.dni10788917
renati.advisor.orcidhttps://orcid.org/0000-0003-1328-0323es_ES
renati.author.dni43977334
renati.author.dni41275676
renati.author.dni03898287
renati.discipline612167es_ES
renati.jurorPercy Samoel Marquina Feldman
renati.jurorYván Jesús García López
renati.jurorLuis Alfredo Negron Naldos
renati.levelhttps://purl.org/pe-repo/renati/level#maestroes_ES
renati.typehttps://purl.org/pe-repo/renati/type#tesises_ES
dc.publisher.countryPEes_ES
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#5.02.04es_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess