Comparación del impacto ambiental de alternativas de vivienda provisoria mediante el análisis de ciclo de vida
Abstract
El contexto global actual se caracteriza por el acelerado incremento del impacto que el ser humano tiene sobre el medioambiente, del cual una fracción importante es atribuible al sector construcción. Una de las maneras de mejorar la sostenibilidad de este rubro es mediante la aplicación una herramienta holística como el Análisis de Ciclo de Vida (ACV). Asimismo, ya que Perú es propenso a la ocurrencia de diversos desastres naturales, el tema de la vivienda temporal de emergencia (VTE) como parte de la respuesta ante estos es un área de interés actual. Por ello, se realizó un ACV de tres modelos de vivienda provisoria elegidos bajo el supuesto de la ocurrencia de un gran sismo en la ciudad de Lima, a fin de incorporar el aspecto medioambiental a los criterios de toma de decisiones ante este tipo de emergencias. Los tres modelos de VTE escogidos para el análisis (M1 – madera machihembrada, M2 – paneles superboard, M3 – paneles SIP) corresponden a diseños empleados como parte de la respuesta ante desastres anteriores en Perú y Chile; tienen como material principal a la madera, en diversas presentaciones y como parte de otros materiales compuestos; son prefabricados, de instalación fácil y rápida; y tienen un área promedio de 18 m2 y capacidad para 5 personas.
La unidad funcional definida para el ACV es 1 m2 de área habitable de la vivienda durante todo su periodo de ocupación. Se analizaron las etapas de producción, construcción, uso y fin de vida. Los límites del sistema incluyen instalaciones internas sanitarias y eléctricas, pero se excluyen sus respectivas redes externas, así como el acondicionamiento del terreno en el que se realizará la construcción. La información para el inventario se obtuvo de la documentación existente de cada modelo y de la investigación del contexto particular planteado, así como de la base de datos Ecoinvent 3.6. El modelado se realizó en SimaPro 9.1, mientras que para el Análisis de Impacto se usó la metodología ReCiPe 2016 midpoint (H) v1.04 considerando las categorías de cambio climático, agotamiento del ozono estratosférico, formación de ozono (salud humana), formación de material particulado, acidificación terrestre, eutrofización de agua dulce, escasez de recursos minerales y escasez de recursos fósiles. Se realizó un análisis de sensibilidad evaluando siete escenarios adicionales, los cuales consideran diferentes patrones de consumo operacional de los usuarios de las VTE, así como periodos de ocupación que varían entre 6 meses y 5 años.
Los resultados del escenario base indican que la producción es la etapa más influyente en el ciclo de vida de los tres modelos, con un 84,7% del total de los impactos del ciclo de vida en promedio para todas las categorías. Asimismo, los tres modelos presentaron impactos similares para la escasez de recursos minerales, mientras que para el resto de categorías, los impactos de los modelos 1 y 2 son aproximadamente el 60% del impacto del modelo 3, salvo para el agotamiento del ozono, en el que este valor se reduce a 20%. Los mayores impactos del modelo 3 se atribuyen principalmente al uso de paneles SIP, mientras que para los modelos 1 y 2 destacan el acero, triplay, fibrocemento, entre otros. No se encontraron variaciones significativas en los resultados de los siete escenarios adicionales evaluados. Se compararon los resultados de potencial de calentamiento global y demanda energética operacional con otros casos de estudio similares de ACV de VTE y viviendas permanentes y se halló que, considerando los valores anuales promedio por unidad de área del ciclo de vida completo, las VTE presentan mayores impactos en casi la totalidad de los casos, lo cual fue atribuido a su relativamente corta vida útil, entre otros factores.
Se concluye que, desde el punto de vista medioambiental, los modelos 1 y 2 representan alternativas recomendables para su uso como VTE, dado el contexto definido para el estudio, debido a que los impactos de ambos son similares entre sí y significativamente menores que los del modelo 3. Sin embargo, se resalta que la decisión final debe considerar adicionalmente otros criterios sociales y económicos para poder alcanzar la solución más sustentable. The current global context is characterized by an accelerated increase in the impact that human beings have on the environment, of which a significant fraction is attributable to the construction sector. One of the ways to improve the sustainability of this sector is through the application of a holistic tool such as Life Cycle Assessment (LCA). Likewise, Peru is prone to the occurrence of various natural disasters, so the issue of temporary emergency housing (TEH) as part of the response to these is a current area of interest. For this reason, an LCA of three temporary housing models chosen under the assumption of the occurrence of a major earthquake in the city of Lima was carried out, in order to incorporate the environmental aspect into the decision-making criteria for this type of emergency. The three TEH models chosen for the analysis (M1 - tongue and groove wood, M2 - superboard panels, M3 - SIP panels) correspond to designs used as part of the response to previous disasters in Peru and Chile; their main material is wood, in various presentations and as part of other composite materials; they are prefabricated, easy and quick to install; and they have an average area of 18 m2 and capacity for 5 people.
The functional unit defined for the LCA was 1 m2 of living area of the house during its entire period of occupation. The stages of production, construction, use and end of life were analyzed. The system boundaries included internal sanitary and electrical installations, but their respective external networks are excluded, as well as the conditioning of the land on which the construction will be carried out. The information for the inventory was obtained from the existing documentation of each model and from the investigation of the particular defined context, as well as from the Ecoinvent 3.6 database. The modeling was done in SimaPro 9.1, while for the Impact Analysis the ReCiPe 2016 midpoint (H) v1.04 methodology was used considering the categories of climate change, stratospheric ozone depletion, ozone formation (human health), fine particulate matter formation, terrestrial acidification, freshwater eutrophication, mineral resource scarcity and
fossil resource scarcity. A sensitivity analysis was carried out evaluating seven additional
scenarios, which consider different patterns of operational consumption of TEH users, as well as
occupation periods that vary between 6 months and 5 years.
The baseline scenario results indicate that production is the most influential stage in the life cycle
for the three models, with 84.7% of the total life cycle impacts for the all-categories average.
Likewise, the three models presented similar impacts for the mineral resource scarcity, while for
the rest of the categories, the impacts of models 1 and 2 are approximately 60% of those of model
3, except for ozone depletion, in which this value is reduced to 20%. The greatest impacts of model
3 are mainly attributed to the use of SIP panels, while for models 1 and 2, steel, plywood and fiber
cement stand out, among others. No significant variations were found in the results of the seven
additional scenarios evaluated. The results of global warming potential and operational energy
demand were compared with other similar LCA case studies of TEH and permanent housing and
it was found that, in regard to the average annual values per unit area of the complete life cycle,
TEH dwellings present higher impacts in almost every case, which was attributed to their relatively
short lifespan, among other factors.
It is concluded that, from the environmental point of view, models 1 and 2 represent recommended
alternatives for use as TEH, given the context defined for the case study, because the impacts of
both are similar to each other and significantly lower than those of model 3. However, it is
highlighted that the final decision must also consider other social and economic criteria in order to
reach the most sustainable solution.
Temas
Viviendas--Ciclo de vida
Viviendas--Impacto ambiental
Construcción--Aspectos ambientales
Viviendas--Impacto ambiental
Construcción--Aspectos ambientales
Para optar el título de
Ingeniero Civil
Collections
The following license files are associated with this item: