Browsing by Author "Caro Ferreyra, Katia Alejandra"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Modelos espacio-temporales bayesianos para estudiar la incidencia de dengue en el Perú(Pontificia Universidad Católica del Perú, 2025-02-28) Caro Ferreyra, Katia Alejandra; Quiroz Cornejo, Zaida JesúsLa prevención del dengue requiere un sistema para identificar las áreas con mayor riesgo, utilizando datos epidemiológicos con estructura espacial y temporal. Los enfoques bayesianos, que integran información previa y manejan estructuras jerárquicas, proporcionan un enfoque flexible y robusto, que permite estimaciones más precisas de la incertidumbre, además de captar la correlación espacial y espacio-temporal, registrando esta variabilidad en las estimaciones de riesgo de enfermedades. Estos enfoques jerárquicos bayesianos, a menudo requieren métodos numéricos sofisticados para proporcionar estimaciones de los parámetros. En este sentido, se pueden aplicar métodos como el Monte Carlo basado en cadenas de Markov (MCMC) o la Aproximación Anidada Integrada de Laplace (INLA), siendo esta última una alternativa computacionalmente más eficiente para modelos gaussianos latentes (MGL), incluyendo modelos espaciales como el modelo jerárquico de Besag, York y Mollié (BYM), el cual puede extenderse a contextos espacio-temporales, que son de gran utilidad para evaluar el conteo de casos a lo largo del tiempo. En este marco, el presente trabajo evaluó tres modelos bayesianos: un modelo jerárquico de tendencia lineal paramétrica, un modelo jerárquico modelado dinámicamente usando un paseo aleatorio o random walk, y un modelo de tendencia dinámica no paramétrica con interacción espacio-temporal. Para mostrar el aporte de esta propuesta, los tres modelos se ajustaron a datos reales que incluyeron tanto los casos de dengue como su incidencia. En el procedimiento de selección del modelo no solo se comparó la idoneidad de los modelos, sino también de distintas distribuciones de conteo, añadiendo al análisis covariables climáticas.