dc.contributor.advisor | Cueva Moscoso, Rony | es_ES |
dc.contributor.author | Baba Yamakawa, Kevin | es_ES |
dc.date.accessioned | 2015-10-07T20:37:47Z | es_ES |
dc.date.available | 2015-10-07T20:37:47Z | es_ES |
dc.date.created | 2015 | es_ES |
dc.date.issued | 2015-10-07 | es_ES |
dc.identifier.uri | http://hdl.handle.net/20.500.12404/6310 | |
dc.description.abstract | Las acciones son títulos emitidos por una sociedad que representan parte de su capital
social. Las acciones son atractivas para inversionistas que desean obtener rentabilidad de su capital porque confieren a sus tenedores el derecho a recibir dividendos. Además, tienden a revaluarse en el tiempo y un inversor puede beneficiarse de una operación de compra y venta.
La selección de acciones para formar un portafolio de inversión ha sido un problema a
resolver para los inversionistas desde el auge de los mercados de valores. En el pasado, se trataba de predecir el comportamiento de las acciones de manera rudimentaria leyendo noticias o graficando las cotizaciones. Con el pasar del tiempo, las alternativas de solución para resolver este problema han ido evolucionando y en la actualidad es común encontrar trabajos que se apoyan del poder de la informática (por ejemplo, algoritmos genéticos o redes neuronales).
Seleccionar las acciones que formen parte de un portafolio de inversión es un problema de complejidad NP-difícil, lo que justifica el uso de métodos heurísticos para obtener soluciones aproximadas. El presente trabajo de fin de carrera presenta una meta heurística Búsqueda Tabú como alternativa de solución a este problema. Esta es una propuesta novedosa pues hasta el momento no se ha intentado resolver el problema de esta forma.
Para medir el desempeño del algoritmo Búsqueda Tabú, se implementó un algoritmo
genético que atacaba el mismo problema y se comparó las soluciones producidas por ambos algoritmos mediante una experimentación numérica. Para el juego de datos usados en este proyecto de fin de carrera, se observó que el algoritmo búsqueda tabú tuvo mejor desempeño que el algoritmo genético produciendo soluciones con mayor rentabilidad esperada y menor riesgo.
Se concluye que el proyecto ha sido exitoso debido a que el algoritmo produce un
portafolio de acciones rentable en un tiempo relativamente corto. El algoritmo puede ser usado para apoyar a los inversionistas en la toma de decisiones al construir un portafolio de inversión para una bolsa de valores. | es_ES |
dc.language.iso | spa | es_ES |
dc.publisher | Pontificia Universidad Católica del Perú | es_ES |
dc.rights | Atribución-NoComercial-SinDerivadas 2.5 Perú | * |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ | * |
dc.subject | Algoritmos--Búsqueda electrónica de información | es_ES |
dc.title | Implementación de un algoritmo búsqueda tabú para el problema de selección de portafolio aplicado a inversiones en bolsas de valores | es_ES |
dc.type | info:eu-repo/semantics/bachelorThesis | es_ES |
thesis.degree.name | Ingeniero Informático | es_ES |
thesis.degree.level | Título Profesional | es_ES |
thesis.degree.grantor | Pontificia Universidad Católica del Perú. Facultad de Ciencias e Ingeniería | es_ES |
thesis.degree.discipline | Ingeniería Informática | es_ES |
renati.advisor.dni | 09942265 | |
renati.advisor.orcid | https://orcid.org/0000-0003-4861-571X | es_ES |
renati.discipline | 612286 | es_ES |
renati.level | https://purl.org/pe-repo/renati/level#tituloProfesional | es_ES |
renati.type | https://purl.org/pe-repo/renati/type#tesis | es_ES |
dc.publisher.country | PE | es_ES |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#1.02.00 | es_ES |