Show simple item record

dc.contributor.advisorCueva Moscoso, Ronyes_ES
dc.contributor.authorÁvalos Aguilar, Víctor Gabrieles_ES
dc.date.accessioned2015-06-04T17:43:19Zes_ES
dc.date.available2015-06-04T17:43:19Zes_ES
dc.date.created2015es_ES
dc.date.issued2015-06-04es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12404/6047
dc.description.abstractEl continuo crecimiento del comercio mundial ha ocasionado un incremento constante en la demanda de vuelos comerciales. Las aerolíneas se han visto en la necesidad de diversificar sus flotas de aeronaves y aumentar el número de las mismas para satisfacer la creciente demanda. La variedad de tipos de avión, la creciente cantidad de vuelos y un mayor número de aeronaves disponibles han complicado el proceso mediante el cual se asigna un avión específico a atender un vuelo programado. Ante esta nueva realidad se ha visto un creciente número de investigaciones dedicadas a diseñar algoritmos capaces de obtener una buena asignación vuelo-avión utilizando la menor cantidad de recursos. Los algoritmos planteados han ido subiendo en complejidad a medida que ha pasado el tiempo. Los primeros que fueron planteados eran denominados algoritmos exactos, estos podían obtener la respuesta optima, pero requerían de mucho tiempo y poder de procesamiento. Luego se hizo uso de algoritmos heurísticos, como el GRASP, el cual entregaban una solución buena, que posiblemente no sea la óptima, pero su consumo de recursos era menor. En la actualidad se han diseñado varios algoritmos meta-heurísticos que permiten obtener una mejor solución que los heurísticos haciendo mejoras continuas a la solución obtenida hasta que se cumplan ciertas condiciones de parada. El objetivo de este proyecto es diseñar un algoritmo genético que minimize los costos en la asignación avión-vuelo y a la vez maximice los posibles beneficios a obtener. Para cumplir con este objetivo se hará un estudio de los conceptos asociados a la asignación de tipos de aeronaves a vuelos y se recopilarán datos reales de previas asignaciones hechas por aerolíneas que están presentes en el mercado peruano. El producto final será un algoritmo genético diseñado y calibrado para obtener soluciones que sean válidas para el actual contexto nacional.es_ES
dc.description.uriTesises_ES
dc.language.isospaes_ES
dc.publisherPontificia Universidad Católica del Perúes_ES
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Perú*
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/*
dc.sourcePontificia Universidad Católica del Perúes_ES
dc.sourceRepositorio de Tesis - PUCPes_ES
dc.subjectAlgoritmos genéticoses_ES
dc.subjectInteligencia artificial--Innovaciones tecnológicases_ES
dc.subjectTráfico aéreoes_ES
dc.subjectAviación comercial--Perúes_ES
dc.subjectAviación--Vueloses_ES
dc.titleAlgoritmo genético para la asignación de tipo de aviones a vueloses_ES
dc.typeinfo:eu-repo/semantics/bachelorThesises_ES
thesis.degree.nameIngeniero Informáticoes_ES
thesis.degree.levelTítulo Profesionales_ES
thesis.degree.grantorPontificia Universidad Católica del Perú. Facultad de Ciencias e Ingeniería.es_ES
thesis.degree.disciplineIngeniería Informáticaes_ES
renati.discipline612286es_ES
renati.levelhttps://purl.org/pe-repo/renati/level#tituloProfesionales_ES
renati.typehttp://purl.org/pe-repo/renati/type#tesises_ES
dc.publisher.countryPEes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 2.5 Perú
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 2.5 Perú