dc.contributor.advisor | Rosas Bazán, Rudy José | |
dc.contributor.author | Tamara Albino, Jimmy Rainer | es_ES |
dc.date.accessioned | 2013-12-09T19:52:23Z | es_ES |
dc.date.available | 2013-12-09T19:52:23Z | es_ES |
dc.date.created | 2013 | es_ES |
dc.date.issued | 2013-12-09 | es_ES |
dc.identifier.uri | http://hdl.handle.net/20.500.12404/5047 | |
dc.description.abstract | El objetivo principal de la presente tesis es presentar la teoría de las familias normales y mostrar su importancia en la teoría de grupos discontinuos y discretos. Primero haremos un estudio de las propiedades de las transformaciones de Moebius y luego su clasificación por conjugación. Para así introducirnos en la teoría de familias normales para funciones holomorfas y meromorfas. A partir de ello probaremos algunos resultados de normalidad para transformaciones de Moebius en especial el teorema fundamental de normalidad para transformaciones de Moebius. Finalmente veremos que un grupo Γ de transformaciones de Moebius es discontinuo en un punto α si y solo si Γ es discreto y forma una familia normal en α. | es_ES |
dc.description.uri | Tesis | es_ES |
dc.language.iso | spa | es_ES |
dc.publisher | Pontificia Universidad Católica del Perú | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ | * |
dc.subject | Funciones de variable compleja | es_ES |
dc.subject | Funciones holomorfas | es_ES |
dc.subject | Singularidades (Matemáticas) | es_ES |
dc.title | Familias normales y grupos discontinuos | es_ES |
dc.type | info:eu-repo/semantics/masterThesis | es_ES |
thesis.degree.name | Maestro en Matemáticas | es_ES |
thesis.degree.level | Maestría | es_ES |
thesis.degree.grantor | Pontificia Universidad Católica del Perú. Escuela de Posgrado | es_ES |
thesis.degree.discipline | Matemáticas | es_ES |
renati.advisor.dni | 40037412 | |
renati.discipline | 541137 | es_ES |
renati.level | https://purl.org/pe-repo/renati/level#maestro | es_ES |
renati.type | http://purl.org/pe-repo/renati/type#tesis | es_ES |
dc.publisher.country | PE | es_ES |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#1.01.00 | es_ES |